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Aurkezpena 

Berriki, Estatistika Bayesiarraren jakinmina Estatistika Ofizialean modu batez nahiko gehitu da. 
Ildo horretan, Eustat-ek XXVIII Estatistika Nazioarteko Mintegia antolatu zuen izenburu 
honekin “Calibrated Bayesian Inference for Sample Surveys” (Kalibrazio Bayesiarraren bidezko 
inferentzia laginketa-inkestetan). Mintegia Roderik Littlek eman zuen, Michigan 
Unibertsitateko Bioestatistika irakaslea eta Richard D. Remington deritzon katedraduna (EEBB).  

Eustat-eko Bekadun batek eremu horretan egindako Ikerketa-lana zabaltzea da argitalpen 
honen helburua.  Dokumentu honek hainbat kapitulu ditu:  oinarri teoriko batekin hasiko da, 
adibide praktikoekin jarraituta, gero aplikazio batekin jarraitzen da non Eustat-eko 
Informazioaren gizartearen inkesta enpresetan (ESIE) erabiltzen den eredu frekuentista eta 
eredu bayesiar baten emaitzak alderatzeko eta azkenik, lortutako emaitzak erakusten dira. 
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Atarikoa 

Euskal Estatistika Erakundeak (EUSTAT) 2015. urtean estatistika- eta matematika-
metodologietan prestatzeko eta ikertzeko emandako bekari esker inferentzia bayestarraren 
inguruan egin den lanaren emaitza da Koaderno Tekniko honetan bildutakoa. 

Dokumentu hau honako kapitulu hauetan banatuta dago: 

Lehen kapituluan, inferentzia bayestarraren sarrera moduko bat egiten da, eta joera berri 
honen eta inferentzia frekuentistaren ezaugarri nagusiak berrikusten dira, haien arteko 
desberdintasunak azpimarratuta. 

Bigarren, hirugarren, laugarren eta bosgarren kapituluetan, hurrenez hurren, proportzio bat, 
batezbesteko normal bat, batezbestekoen diferentzia eta erregresio lineala kalkulatzeko 
lantzen da inferentzia bayestarra. Halaber, adibide batzuk ematen dira azaldutako kontzeptu 
teorikoak hobeto ulertzeko. 

Seigarren kapituluan, datu simulatuekin egindako bi adibide ematen dira, eta inferentzia 
bayestarra Estatistika Ofizialean aplikatzeko aukeraren inguruko lehen ondorioak lortzen dira. 

Zazpigarren kapituluan, ikusitako kontzeptuei lotutako aplikazio bat azaltzen da. Kapitulu 
horretan, EUSTATek egindako Informazioaren Gizarteari buruzko Inkesta – Enpresak (IGIE) 
erabiltzen da, eredu frekuentista batetik eta eredu bayestar batetik abiatuta merkataritza 
elektronikoaren estimazioak konparatzeko. Aplikazio horrekin lortutako emaitzak poster-saio 
baten bidez aurkeztu ziren Toledon, 2016ko irailaren 5etik 7ra bitarte egindako Estatistika eta 
Ikerketa Operatiboaren eta Estatistika Publikoko X. Jardunaldien XXXVI. Biltzar Nazionalean 
(SEIO 2016). 

Azkenik, 6. eta 7. kapituluen alde praktikoa egiteko R lengoaian inplementatutako kodearen 
zati bat agertzen duten bi eranskin daude. 
 
Halaber, atariko hau baliatu nahi dut Eustateko Metodologia, Berrikuntza eta I+Gko Arloa 
osatzen duten guztien babesa eskertzeko, eta, bereziki, Anjeles Iztuetari eskerrak eman nahi 
dizkiot une oro agertutako babes eta konfiantza irmoagatik. Era berean, Eustateko langile 
guztien adeitasuna eskertu nahi dut. Izan ere, haiei esker, lan-munduarekiko lehen kontaktu 
hau esperientzia atsegina eta gogobetegarria izan da, eta betiko iraungo du nire oroimenean. 
Azkenik, eskerrak eman nahi dizkiet nire familiari eta Gianfeliceri, hartutako erabaki 
bakoitzean lagundu izanagatik eta une oro nire ondoan egon izanagatik. 

 

 

GAKO-HITZAK: inferentzia bayestarra, Bayes, inferentzia frekuentista. 
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1. Estatistika frekuentista vs bayestarra 

1.1 Sarrera 

"Probabilitate" kontzeptutik abiatuta, bi ikuspegi planteatzen dira analisi estatistikoan: 
estatistika frekuentista eta estatistika bayestarra. Estatistika bayestarra oraingo kontua dela 
dirudi, baina urte askotako historia dauka dagoeneko. Izan ere, Bayesen teorema 1763. urtean 
formulatu zuen Thomas Bayesek. Dena dela, urte asko behar izan ziren paradigma estatistiko 
horrek eskaintzen dituen abantailen inguruko kontzientzia zientifikoa finkatzeko.  Horren 
arrazoia software bayestarrek izan duten bilakaera izan daiteke. Izan ere, orain konplexutasun 
handiko problemak ebatz ditzakete, baina garai batean erabat ezinezkoa zitzaien.  

1.2 Estatistika frekuentista 

Ikuspegi frekuentista batetik, probabilitatea esperimentazioari lotuta definitzen da, eta beti 
zirkunstantzia beretan errepikatutako proba berdin eta independenteen sekuentzia infinitu 
bateko maiztasun erlatiboaren muga dela esaten da. Adibidez, esperimentu bat aldi kopuru 
infinitu batean errepikatzen bada eta 1000 alditik 350etan emaitza jakin bat gertatu dela 
egiaztatzen bada, frekuentista batek esango luke emaitza horren probabilitatea % 35 dela. Hau 
da, A gertaera ezezagun baten P probabilitatea, P(A), gertaera horren maiztasunaren arabera 
definitzen da, aurreko behaketetan oinarrituta. Definizio horren arabera, frekuentista batek 
dio gertaera bakoitzari bere egiazko balio bat lortzeko probabilitate bat lotu dakiokeela. 
Adibidez, Erresuma Batuan jaioberri guztien % 50,9 neskak badira, eta kontuan hartuta 
A=”ausaz hautatutako ume bat neska da”, P(A)=0,509 izango da. 

Beraz, hurbilketa klasikoa gauzen probabilitate "erreala" aztertzean datza, eta esperimentu 
multzo batekin egindako neurketa bat azpiko probabilitate errealera zer neurritan hurbiltzen 
den finkatzen saiatzen da. Hori dela-eta, parametroak balio finkoak baina ezezagunak dira 
frekuentista batentzat, eta datuak behatzeko probabilitatea maximizatzen duten parametroen 
balioen aukeraketan oinarritzen da estimazioa. Hortaz, ausazko aldagai bati edo gertaera bati 
lotutako probabilitateaz hitz egin dezakegu, baina inoiz ez parametro, hipotesi, eredu edo falta 
den behaketa bati lotutako probabilitateaz. 

1.2.1 Inferentzia 

Populazio baten lagin batetik abiatuta populazio horren inguruko ondorioak ateratzeko aukera 
ematen diguten estatistika-tekniken multzoa da inferentzia estatistikoa. Ikuspegi 
frekuentistaren arabera, inferentzia estatistikoko tekniken helburua intereseko parametroari 
buruzko bi hipotesi kontrastatzea da. Hipotesiak honako hauek dira: H0  hipotesi nulua eta H1 
hipotesi alternatiboa. H0 hipotesia era arbitrarioan finkatutako p-balio baten arabera baztertu 
edo onartuko dugu (p<0.05 normalean). Erabakia hartzeko garaian, bi errore mota egin 
ditzakegu. Hipotesi nulua bazter dezakegu, hipotesi hori egiazkoa izanik ere (I. motako errorea 
edo α errorea), edota hipotesi alternatiboa bazter dezakegu, egiazkoa izanik ere (II. motako 
errorea edo β errorea). II motako errorearen (1 - β) probabilitate osagarria  kontrastearen 
ahalmena edo potentzia izenekoa da.  Horrela, beraz, I. motako errore bat onartzeko 

1. Kapitulua 

http://es.wikipedia.org/wiki/Teorema_de_Bayes
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prestasuna finkatzen dugu. Hala ere, p-ren ezaugarri gisa azpimarra dezakegu bere balioa  
laginaren tamainaren araberakoa dela. Hau da, lagina zenbat eta handiagoa izan, orduan eta 
handiagoa izango da konparatzen diren taldeen artean alde esanguratsuak aurkitzeko 
probabilitatea.  

1.2.2 Konfiantza-tarteak 

Inferentzia frekuentistan, konfiantza-tarteak (KT) ere oso maiz erabiltzen dira. IC95% bat aldien 
% 95etan asmatzen duen balio-heina da. Hau da, laginketa askotan errepikatuko balitz, 
prozedura bera aplikatuko balitz eta konfiantza-tarteak % 95ean kalkulatuko balira (formula 
ezagunen arabera), 100 tartetik 95etan kalkulatzen ari den egiazko parametroa egongo 
litzateke, eta α=0,05 dela finkatuko litzateke. Hortaz, konfiantza-tarte bakarra kalkulatzen 
bada, tarte hori "arrakastatsuetako" bat delako "konfiantza" baino ezin da eduki.  Konfiantza-
tarteak egiteko garaian, estimazioak eta errore estandarrak esku hartzen dute. Errore 
estandarra gure estimazioan onartzen dugun errore-maila da, eta laginaren tamainaren 
alderantziz proportzionala da. Hortaz, lagina zenbat eta handiagoa izan, orduan eta zehatzagoa 
izango da estimazioa.  Horrela, beraz, H0 kontrastatzea gure konfiantza-tarteak parametroa 
biltzen duela egiaztatzea da.  

1.2.3 Adibidea: proportzioen konparazioa hainbat egoeratan, ikuspegi frekuentista batetik 
abiatuta 

Demagun, adibidez, gaixotasun bat duten pazienteak tratamendu konbinatu bat jasotzen 
dutenean tratamendu tradizionala erabiltzen dutenean baino bizkorrago osatzen diren 
baloratzeko saiakuntza kliniko bat egiten dela. Ziur samar dakigu pazienteen % 60 baino ez 
direla azken baliabide terapeutikoarekin osatzen. Bestalde, ikerketa-taldeak bibliografian eta 
eguneroko lanean oinarrituta dituen arrazoi teorikoak eta zantzu enpirikoak kontuan hartuta, 
baikortasun handi samarrarekin pentsa daiteke tratamendu konbinatua tratamendu sinplea 
baino eraginkorragoa dela. Demagun n = 80 dela, tratamendu konbinatua 40 pertsonari eta 
tratamendu tradizionala beste 40ri aplikatzen diegula, eta bost egunen ondoren tratamendu 
konbinatua jaso duten pazienteen % 75ek (πc = 0,75) nabarmen egin dutela hobera, eta 
tratamendu tradizionala jaso dutenen kasuan, berriz, osatu direnen tasa % 60 (πt = 0,60) 
dela. 

 BAI EZ Guztira 

K 30 10 40 
T 24 16 40 

Guztira 54 26 80 

Datuak lortu ondoren (πc, πt y πd = πc − πt), honako hipotesi honi lotutako probabilitatea 
kalkulatzen da: H0: πd ≤ 0. Horretarako,  χ 2 proba aplikatu, eta  χ 2obs = 2,05 dela eta 

dagokion p-balioa 0,076 dela lortuko dugu. Balio hori behar bezain txikia ez denez gero, ez 
dugu ebidentzia nahikoa tratamendu konbinatuak ondorio nabarmen desberdinak dituela 
ondorioztatzeko. 

Demagun esperimentua berriz egiten dela, baina oraingoan n ez dela 40 paziente talde 
bakoitzean, 200 baizik. Honako emaitza hauek lortuko lirateke: 
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 BAI EZ Guztira 

K 150 50 200 
T 120 80 200 

Guztira 270 130 400 

 Osatzen diren pazienteen tasak πc =  0,75  eta πt =  0,6 dira berriz, eta, beraz, diferentzia 
πd = 0,15 da. Kasu horretan,  χ 2 probarekin  χ 2obs = 10,26 lortuko dugu, eta, beraz, p-balioa 

0,00068 izango da.  Beraz, tratamendu konbinatua eraginkorragoa dela onartuko dugu, 
% 95eko konfiantzarekin (baita % 99ko konfiantzarekin ere). Horrek esan nahi du laginaren 
tamainak eragin handia duela p-balioan. 

Azkenik, demagun orain bigarren esperimentuaren baldintza beretan egoera alderantzizkoa 
dela. Honako emaitza hauek lortuko genituzke: 

 BAI EZ Guztira 

K 103 97 200 
T 120 80 200 

Guztira 223 117 400 

Lortuko genituzkeen estimazioak πc =  0,52  eta πt = 0,60 izango lirateke (πd = πt − πc 
izanik). H0  hipotesia (πd ≥ 0) egiazkoa dela suposatuta, hipotesi-probak esaten digu 
 χ 2obs = 3,29 eta p-balioa=0,0349  dela. Kasu horretan, H0 hipotesia baztertuko dugu, baina 

kontrako zentzuan, hau da, tratamendu tradizionala konbinatua baino eraginkorragoa dela 
ondorioztatuko dugu. Ondorio hori ez dator bat aldez aurretiko ezagutzekin eta 
esperimentuaren bidez bilatzen zen emaitzarekin. 

1.3 Estatistika bayestarra 

Maiz egiten dira honelako galderak: zenbatekoa da ikasle batek matematikako azterketa 
gainditzeko probabilitatea? Erantzun bat emateko, inork ez luke beharrezkotzat hartuko 
ikasleak azterketa 1.000 aldiz egitea, era horretan zenbat aldiz gainditu duen zenbatzeko eta 
arrakasten ehunekoa kalkulatu ahal izateko. Halaber, ohikoa izaten da "oso handia da 
Bartzelonak partidua irabazteko probabilitatea" entzutea edota mediku batek paziente jakin 
bat onik ateratzeko probabilitatea txikia dela esatea. Horrelako baieztapenek ez dute zentzurik 
esparru frekuentistan, ekintza horiek ezin izango baititugu errepikatu aldi askotan eta 
baldintza beretan. Lagunarteko hizkeran, berriz, askotan erabiltzen dira, eta zeregin erreal bat 
betetzen dute erabakiak hartzeko garaian.  

Metodo bayestarrak, aldiz, ebidentzia berrietan oinarrituta iragarpenak hobetzeko ideian 
oinarrituta daude. Ikuspegi bayestarrari jarraikiz, probabilitatea ziurgabetasun-mailaren neurri 
bat da. Bayestar batentzat, iragarpen bat egiteko dugun ezagutza-maila neurtzen duen 
adierazpen matematikoa da probabilitatea. Beraz, joera bayestarraren arabera 

, zorrotz mintzatuta ez da zuzena “P ekintza bat gertatzeko probabilitatea % 30 dela iragartzen 
dut" esatea. Horren ordez, honako hau adierazi beharko litzateke: "orain daukadan ezagutzan 
oinarrituta, % 30ean ziur naiz P gertatuko dela”. 

Bestalde, bayestarrek ausazko aldagai gisa interpretatzen dituzte parametroak, eta ikuspegi 
honetan funtsezko tresna den Bayesen Teoreman oinarrituta aztertzen da aldagai horien 
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probabilitate-banaketa. Probabilitate bayestarraren arabera, oinarrizkoagoa da baldintzazko 
probabilitate bat baterako probabilitate bat baino. Beraz, P(A|B) definitu nahi da P(A, B)  
baterako probabilitatea kontuan hartu gabe. 

1.3.1 Inferentzia bayestarraren lehenengo urratsak 

P(A,B)=P(A|B)*P (B) eta, simetriaz, P(A, B)=P (B|A)*P(A) kontuan hartuta, Bayesen 
formula ezaguna lortzen da bi adierazpenak batuta: 

P(A|B) =
P(B|A) ∗ P(A)

P(B)
. 

Problema bayestar bat formulatu nahi izanez gero, θ deituko diogu, adibidez, kalkulatu nahi 
dugun parametroari. Ondoren, parametroaren probabilitate-banaketa finkatu behar da 
eskuragarri dagoen informazioarekin; a priori probabilitate deitzen zaio horri: P(θ).  Oso 
garrantzitsua da aldez aurretiko informazioa datuak kontuan hartu gabe ezartzea. Estatistika 
bayestarraren aurkako kritika nagusiak puntu horrengatik jaso dira. Izan ere, objektibotasuna 
galtzen da, eta, beti esan izan denez, zientziak objektiboa izan behar du. Efektu hori 
murrizteko, a priori informazioa kuantifikatzeko garaian metodo bakar batera ez mugatzea eta 
kasu bakoitzean ondorioak nola aldatzen diren egiaztatzea gomendatzen dute egile batzuek. 
"Sentsibilitate-analisi" deitzen zaio horri. Edonola ere, a priori informazioa nahikoa ez bada eta 
intuizio pertsonalak alde batera utzi nahi badira, informaziozkoa ez den banaketa bat esleituko 
da, aurrerago ikusiko dugunez. 

Ikuspegi bayestarraren ezaugarri bereizgarri bat zera da, lagin behagarriaren tamaina oso 
handia denean, aukeratzen den a priori banaketak oso garrantzi txikia izan ohi duela. Horrela, 
beraz, ikuspegi bayestarraren baliagarritasunik handiena laginen tamainak oso handiak ez 
direnean lortzen da. 

Bigarrenik, gure azterketan behatutako datuek ematen duten informazioa kuantifikatu beharra 
dago, hots, egiantza: LD(θ). Azkenik, a posteriori probabilitate-funtzioa kalkulatzen da: 
P(θ|datos). Hau da, zenbateko probabilitatea duten θ parametroaren balioek gure datuak 
ikusi ondoren. Ondorengo banaketa lortzeko, a priori informazioa eta datuen egiantza 
konbinatzen dira. Hortaz, P(θ|D) ∝ LD(θ) ∗ P(θ), non ∝ sinboloak proportzionaltasuna 
adierazten duen. 

1.3.2 Aplikazioa proba sekuentzialetan 

Paradigma bayestarra, beraz, ikaskuntza efektuari lotuta dago. Horren arabera, prozedura 
dinamiko bati lotuta dago ezagutza. Datu berriak eskuratzean, gure aldez aurretiko ezagutzak 
datu berriak erantsiz eguneratzeko aukera eskaintzen digu Bayesen teoremak. Horretan 
oinarrituta, aldez aurretiko informazio berri bihurtzen dira. Hau da, lehenik eta behin, D1 datu 
multzoa behatzen da: 

P(θ|D1) ∝ LD1(θ) ∗ P(θ). 

Ondoren, D2 multzo berria behatu behar da: 

P(θ|D1, D2) ∝ LD2(θ) ∗ P(θ|D1). 
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Beraz, esan daiteke metodo bayestarrak aproposak direla proba sekuentzialak aztertzeko. 

Adibidez, demagun aseguru-konpainia batek, urtero bezala, bere hiru filialetako bakoitzak (Fi1, 
Fi2 eta Fi3) kobratu beharreko fakturen ikuskapena egin nahi duela. Aurreko ikuskapenetatik 
dakigunez, fakturen % 20  Fi1 filialarenak, % 30  Fi2 filialarenak eta % 50  Fi3 filialarenak dira. 
Demagun, halaber, Fi1 filialaren fakturen % 1, Fi2 filialaren fakturen % 2 eta Fi3 filialaren 
fakturen % 3 akastunak direla. Demagun orain egoitza nagusian faktura guztiak jasotzen direla 
eta bertan ez daudela batere pozik Fi3 filialeko zuzendariarekin. Fakturen bolumena oso 
handia denez gero, multzo bat ausaz hautatzea erabaki da. Demagun ausaz bat hautatzen 
dugula eta akastuna dela. Faktura hori Fi3 filialekoa izateko probabilitatea % 50etik gorakoa 
bada, zuzendaria kendu egingo dute kargutik. Helburua hirugarren filialeko zuzendaria kargutik 
kenduko duten ala ez iragartzea da. 

Honako hauek definituko ditugu:  Fi=”Hautatutako faktura Fii filialekoa da”, i=1,2,3 eta 
D=”Hautatutako faktura akastuna da”.  Asmoa P(F3|D) kalkulatzea da, eta, horretarako, 
Bayesen teorema erabiliko dugu honako probabilitate hauekin:  

 P(F3): faktura Fi3 filialekoa izateko a priori edo aldez aurretiko probabilitatea da;  F3 filialaren 
probabilitatea da, faktura akastuna den ala ez jakin aurretik.  

P(F3|D): a posteriori edo ondorengo probabilitatea; F3 filialaren probabilitatea da, faktura 
akastuna dela jakin ondoren. Hau da, Bayesen teoremak hasierako probabilitateak emango 
dizkigu, behatutako datuekin berrikusiak. 

P(D|F3):   D gertaerak (hautatutako faktura akastuna da) duen egiantza, faktura hirugarren 
filialekoa dela jakinik. Ikusi dugunez, honako notazio hau erabil daiteke:  

P(Fi|D) ∝ LD(Fi) ∗ P(Fi). 

Adibide honetan, honako hau dugu: P(F1) = 0,2, P(F2) = 0,3 y P(F3) = 0,5 eta P(D|F1) =
0,01, P(D|F2) = 0,02 y P(D|F3) = 0,03. Hortaz, 

P(D) = P(D|F1) ∗ P(F1) + P(D|F2) ∗ P(F2) + P(D|F3) ∗ P(F3) = 
= 0,01 ∗ 0,2 + 0,02 ∗ 0,3 + 0,03 ∗ 0,5 = 0,023. 

Eta  

P(F1|D) =
P(D|F1 ) ∗ P(F1 )

P(D)
=
0,01 ∗ 0,2

0,023
= 0,087. 

P(F2|D) =
P(D|F2 ) ∗ P(F2 )

P(D)
=
0,02 ∗ 0,3

0,023
= 0,261. 

P(F3|D) =
P(D|F3 ) ∗ P(F3 )

P(D)
=
0,03 ∗ 0,5

0,023
= 0,652. 

 
Hau da, Fi3  filialeko zuzendaria kargutik kenduko dute. 

Demagun orain bigarren faktura bat aztertu nahi dugula eta hura ere akastuna dela. 
Hirugarren filialeko zuzendariaren egoera aztertu behar da berriz. 

A priori probabilitate gisa lehen fasean a posteriori gisa lortutakoak erabiliz gero, honako hau 
izango dugu: 
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P(F1|D) = 0,087;  P(F2|D) = 0,261;  P(F3|D) = 0,652; 

D2:=”bigarren fasean hautatutako faktura akastuna da" izanik: 

P(D2) = P(D2|F1) ∗ P(F1|D) + P(D2|F2) ∗ P(F2|D) + P(D2|F3) ∗ P(F3|D) = 
= 0,01 ∗ 0,087 + 0,02 ∗ 0,261 + 0,03 ∗ 0,652 = 0,02565. 

Eta 

P(F1|D2) =
P(D2|F1 ) ∗ P(F1|D )

P(D2)
=
0,01 ∗ 0,087

0,02565
= 0,034. 

P(F2|D2) =
P(D2|F2 ) ∗ P(F2|D)

P(D2)
=
0,02 ∗ 0,261

0,02565
= 0,2035. 

P(F3|D2) =
P(B2|D3 ) ∗ P(F3|D )

P(D2)
=
0,03 ∗ 0,652

0,02565
= 0,7625. 

Horrela, beraz, egoerak okerrera egin du hirugarren filialeko zuzendariarentzat, faktura bere 
filialekoa izateko probabilitatea 0,7625ra  igo baita. 

1.3.3 Sinesgarritasun-tarteak 

Inferentzia bayestarrean, sinesgarritasun-tarteak erabiltzen dira konfiantza-tarteen ordez.  
Bayestarrek a posteriori lortzen den dentsitate-funtzioa adierazten duen kurba hartzen dute 
kontuan, eta kurba horren azpiko azalera X eta Y balioen artean % (1-α) bada, egiazko balioa 
probabilitate handiarekin (adibidez % 95ekoarekin, baldin eta α=0,05 bada) X eta Y balioen 
artean dagoela esan daiteke. Kasu horretan, (X, Y) balioek % 95eko sinesgarritasun-tartea edo 
konfiantza-tarte bayestar bat osatzen dutela esaten da. Nolanahi ere, ikuspegi frekuentista 
batetik eta ikuspegi bayestar batetik emaitza berdinak lor badaitezke ere, emaitza horien 
interpretazioa desberdina izango da beti.  Adibidez, a priori banaketa finkatzeko garaian 
banaketa hori erabiltzeko behar adinako ebidentziarik ez dugula erabaki badugu, eta, beraz, a 
priori banaketa gisa banaketa uniformea finkatzen badugu, lortuko ditugun konfiantza-tarteak 
berdinak izango dira zifrari dagokionez. Ikusi dugunez, berriz, esanahia oso desberdina izango 
da. 

1.3.4 Adibidea: proportzioen konparazioa hainbat egoeratan, ikuspegi bayestar batetik 
abiatuta 

Bestalde, tratamendu konbinatuaren eta tratamendu tradizionalaren arteko aldea 
esanguratsua zen ala ez aztertu dugun 1.2.3 atalera itzuliz, πc eta πt proportzioei buruzko 
ezagutza handiagoa lortu nahi dugu metodo bayestarrak erabiliz.  Bi proportzioak [0,1] tartean 
dauden balio jarraituak dira, eta balio horien balio zehatza zenbatekoa den ez badakigu ere, 
badugu intuizio bat, eta etekinik handiena atera behar diogu. Ikusi dugunez, gure hasierako 
ideiak proportzio bakoitzerako probabilitateen banaketa baten bidez adieraztean datza lehen 
urratsa. Aurreko azterketen ondorioz, zantzu handiak genituen tratamendu konbinatua 
tratamendu tradizionala baino eraginkorragoa zela pentsatzeko.  Hori dela-eta, a priori 
probabilitate gisa pentsa daiteke πt  balioa seguruenik 0,4tik 0,8rako tartean dagoela, 0,6 
inguruko balioa duela eta puntu horretatik urruntzean probabilitatea berehala murrizten dela.  
πc proportzioari dagokionez, 0,8 baliotik hurbil dagoela eta (0,7-0,9) tartetik kanpo egoteko 
probabilitatea urria dela pentsatzen dugu. Proportzio bat denez gero, 2. kapituluan ikusiko 
dugunez a priori dentsitate baten ohiko forma a eta b parametroen mendeko beta banaketa 

batena da. Beta dentsitatearen funtzioa honako honen proportzionala da: π𝑎−1(1 − π)𝑏−1 . 
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 πc proportzioaren kasuan, a priori beta banaketa a = 72 eta b = 18 parametroak dituena izan 
daiteke, eta πt proportzioaren kasuan, berriz, a = 57 eta b = 38 parametroak dituena. 
Ondorengo irudian, hautatutako a priori dentsitatearen funtzioak daude adierazita. 

 
 

 

Bistakoa da a priori banaketak beste modu batean ere aukeratu zitezkeela, baina, guztiz 
bestelako a priori informazioa edukitzearen kasuan izan ezik, emaitzak ez dira oso desberdinak 
izango.  

Hurrengo urratsa datuak behatzean datza, eta a posteriori banaketak lortzea izango da 
helburua. Horretarako, Bayesen teorema erabiliko da. Egiazta daiteke beta(a,b) banaketa 
baten eguneratzea (e arrakastak eta f porrotak adierazten dituen binomialaren bidez) 
beta(a*,b*) banaketa bat dela, a* = a + e eta b* = b + f izanik. Lehen esperimenturako, eta 
lehen taulan agertutako datuak kontuan hartuta, πc  eta πt  proportzioetarako a posteriori 
banaketak Bc (102,28) eta Bt (81,54) izango lirateke, hurrenez hurren.  

Gure helburua tratamenduen proportzioek duten diferentziaren (πd = πc − πt ) banaketa 
aztertzea da;  4. kapituluan sakonean aztertuko dugunez, banaketa normal bat izango da –
𝑁(𝑚′𝑑 , (𝑠

′
𝑑)
2)–, non 

𝑚′𝑑 =
𝑎𝑐
∗

𝑎𝑐
∗ + 𝑏𝑐

∗ −
𝑎𝑡
∗

𝑎𝑡
∗ + 𝑏𝑡

∗ ,     (𝑠
′
𝑑)
2 =

𝑎𝑐
∗𝑏𝑐
∗

(𝑎𝑐
∗ + 𝑏𝑐

∗)2(𝑎𝑐
∗ + 𝑏𝑐

∗ + 1)
+ 

𝑎𝑡
∗𝑏𝑡
∗

(𝑎𝑡
∗ + 𝑏𝑡

∗)2(𝑎𝑡
∗ + 𝑏𝑡

∗ + 1)
. 

 
R softwarea erabiliz, esperimentu bakoitzaren diferentziaren banaketak honako hauek dira: 

 
 

Osatutako pazienteen proportzioaren a priori banaketak 

Kombinatua 
Tradizionala 
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Lehen esperimentuaren banaketari erreparatzen badiogu, diferentziaren eremurik 
probableena 0,18 balioaren ingurukoa dela ikusiko dugu. Gogora dezagun ikuspegi 
frekuentistaren barruan ikertzaileak ezin zuela ezer ondorioztatu,  χ 2 testa egin ondoren 
tratamendu konbinatua hobea zela esateko lagin-ebidentzia nahikoa ez zegoela baino ezin 
baitzuen baieztatu.  Ikuspegi bayestarrak, aldiz, baieztapen zehatzak eta zentzuzkoak egiteko 
aukera ematen duten probabilitateak zenbatzea ahalbidetzen du. Kasu honetan, adibidez, 
adierazitako tratamenduekin sendatzeko proportzioen arteko diferentzia gutxienez % 10 
izateko probabilitatea % 93,7 da. Hau da, esan daiteke ia ziurra dela tratamendu konbinatua 
eraginkorragoa dela.  

Bigarren esperimentuko datuekin lortutako kurbak agerian uzten duenez, laginaren tamainak 
analisi bayestarrean duen eragina ez da ikuspegi frekuentistan duena bezain handia. Kasu 
honetan, laginaren tamaina aurreko kasuan baino askoz handiagoa bada ere, ateratzen dugun 
ondorioa antzeko samarra da. Izan ere, sendatzeko proportzioen arteko diferentzia 0,17 da 
kasu honetan, eta 0,18 aurrekoan.  Oraingoan, kurba estuagoa da, eta, beraz, laginaren 
tamaina horrekin diferentziaren portaera posiblearen inguruan lortzen den ideia zehatzagoa 
da. Hortaz, esan dezakegu tratamendu konbinatuaren balioa balio tradizionala baino gutxienez 
% 10 handiagoa izateko probabilitatea  % 95,85  dela. 

Azkenik, hirugarren esperimentuan, lortutako emaitzak ez datoz bat ikertzaileak aldez aurretik 
uste zuenarekin. Irudian ikus daitekeenez, tratamenduen arteko diferentzia zero ingurukoa da. 
Kontraste frekuentistaren arabera, eta % 95eko konfiantzarekin, tratamendu tradizionala 
eraginkorragoa zela onartzen zen. Ikuspegi bayestarraren arabera, berriz, tratamendu 
tradizionalarekin osatzen direnen ehunekoa % 10etik gorakoa izateko probabilitatea ia 
mespretxagarria da, eta osatzen direnen ehunekoak 0ren desberdinak gehienez ere % 5ean 
izateko probabilitatea % 87,53ra  iristen da.  Kasu horretan, ikertzaileak egindako a priori 
probabilitateak bereziki erakargarriak dira: emaitza enpirikoa bere aurreko ezagutzen eta 
esperientzien guztiz kontrakoa bada ere, lortzen den ondorioa bitartekoa da eta ez du laginean 
lortutako emaitzak soilik ordezten.  

Hortaz, ondoriozta dezakegunez, metodo frekuentistek askotan ematen dizkigutenak baino 
ondorio intuitiboagoak eta zentzu komunari lotuagoak lor ditzakegu metodo bayestarrekin. Eta 

Osatutako pazienteen proportzioetan dagoen 
diferentziaren a posteriori banaketak 

1. esp. 

2. esp. 

3. esp. 
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metodo klasikoak aplikatzea askoz errazagoa bada ere, azterketa egin aurreko ikuspuntuak edo 
usteak txertatzeko aukera izatea oso erakargarria da, oso prozesu naturala eta giza 
arrazoibidearen antzekoa baita. 

1.4 Paradigma bakoitzaren ezaugarri nagusien laburpena 

Kapitulu hau amaitzeko eta lehen kontzeptuak finkatzeko, ikuspegi bakoitza definitzen duten 
ezaugarri garrantzitsuak azalduko ditugu orain. 

1.4.1 Estatistika frekuentistaren ezaugarriak 

 Ibilbide luzea du egina, eta prozedura eta emaitza onak eskaintzen ditu. 

 Erraz aplikatzen da konputazionalki. 

 Probabilitatea zirkunstantzia beretan errepikatutako proba berdin eta independenteen 
sekuentzia infinitu bateko maiztasun erlatiboaren muga dela esaten da. 

 Gertaera bakoitzari bere egiazko balio bat lotzeko probabilitate bat eman dakioke. 

 Parametroak finkoak baina ezezagunak dira. 

 Estimazioa, nolanahi ere, datuak behatzeko probabilitatea maximizatzen duten 
parametroen balioen aukeraketan oinarrituta dago. 

 Egiantz handienaren edo karratu txikienen metodoa ohikoa izaten da. 

 Inferentzia hipotesi bat α bat finkatuz kontrastatzean datza. 

 H0 onartzen da, baldin eta P(datuak|H0)>α bada. 

 𝐻1 onartzen da, baldin eta P(datuak|H0)<α bada. 

 P-balioa gutxienez benetan lortu dena bezain muturrekoa izango den emaitza bat lortzeko 
probabilitatea da, hipotesi nulua egiazkoa dela suposatuta. 

 Laginaren tamainak ez du eraginik p-balioan. 

 Tamaina bereko hainbat lagin ateratzen badira eta lagin bakoitzaren % 95eko konfiantza-
tarteak kalkulatzen badira, tarte guztien % 95ek zenbatesten ari den parametroa edukiko 
dute. 

 Aldez aurretiko ezagutzak ez dira kontuan hartzen. 

1.4.2 Estatistika bayestarraren ezaugarriak 

 Oso ikaskuntza-prozesu naturala da, giza arrazoibidearen antzekoa, eta ondorio 
intuitiboagoak ateratzeko aukera ematen du. 

 Konputazio-denbora gehiago eta algoritmo konplexuagoak behar dira. 
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 Oso erabilgarria laginen tamaina oso handia ez denean. 

 Behatutako ebidentzia berrietatik abiatuta iragarpenak hobetzea da helburua. 

 Probabilitatea ziurgabetasun-mailaren neurritzat hartzen da. 

 Parametroak ausazko aldagai gisa interpretatzen dira, eta Bayesen teoreman oinarrituta 
aztertzen da aldagai horien probabilitate-banaketa. 

 Aldez aurretiko informazioa erabilgarria da, baina garrantzitsua da aldez aurretiko banaketa 
behatutako datuak kontuan hartu gabe ezartzea. 

 A priori daukagun informazioa kuantifikatzeko eta ondorioak konparatzeko hainbat metodo 
erabiltzea gomendatzen da, objektibotasuna gal ez dadin. 

 Laginaren tamaina oso handia denean, a priori banaketak oso garrantzi txikia izan ohi du. 

 Egokia da proba sekuentzialak egiteko. 

 % 95eko probabilitatea dago sinesgarritasun-tarteak edo konfiantza-tarteak parametroa 
edukitzeko. 
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2.  Proportzio baterako inferentzia bayestarra 

2.1 Sarrera 

Inferentzian gehien agertzen diren arazoetako bat π populazio-proportzio baten balio ezezaguna 
zenbatestea da. Demagun populazioaren ausazko lagin bat dugula, Y n saiakuntza independenteren 
sekuentzia bateko arrakasta kopurua dela eta erantzun-aldagaia dikotomikoa dela, hau da, gehienez 
ere bi balio har ditzakeela.  Horietako bati arrakasta (e, "éxito" hitzetik) deitzen zaio, eta gertatzeko 
probabilitatea π da; besteari, berriz, porrot (f, "fracaso" hitzetik) deitzen zaio, eta gertatzeko 
probabilitatea 1 – π da. 

Y behaketaren (hots, gertaeren guztizkoaren, π parametroa emanda) baldintzazko banaketa 
𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝜋)  da, eta honela adierazten da: 

𝑓(𝑦|π) = (
𝑛
𝑦)π

𝑦(1 − π)𝑛−𝑦, 𝑦 = 1,… , 𝑛. 

Kontuan hartu behar da π parametro finko bat dela hemen, eta y-ren balio posibleen banaketaren 
probabilitatea behatzen ari garela. 

Dena dela, y-ren eta π-ren arteko erlazioa aztertzean y parametro finkoa bada eta π har ditzakeen 
balioen artean uzten badugu, lortzen den egiantz-funtzioa honako ekuazio honen bidez adieraz 
daiteke: 

𝑓(𝑦|𝜋) = (
𝑛
𝑦)𝜋

𝑦(1 − 𝜋)𝑛−𝑦,        0 ≤ 𝜋 ≤ 1.  

Lehen begiratuan adierazpen matematiko berdina ikusten bada ere, interpretazioa guztiz 
desberdina da. 

Bayesen Teorema aplikatzeko, datuak behatu aurretik genituen ezagutza eta usteekin eraikitako a 
priori banaketa-funtzioa –𝑔(𝜋)– behar dugula ikusi dugu arestian.  A posteriori banaketa, beraz, a 
priori banaketa eta egiantza biderkatuta lortzen da.  Biderkadura horrek zentzua dauka baldin eta 
soilik baldin aldez aurretiko banaketa egiantzarekiko independentea bada. Horregatik, funtsezkoa da 
aldez aurretiko banaketak behatutako datuen eragina ez izatea.  Kasu horretan, a posteriori 
banaketa biderkadura horren proportzionala izango da. 

𝑔(𝜋|𝑦) ∝ 𝑔(𝜋) ∗ 𝑓(𝑦|𝜋).                  (2.1) 

Proportzionala dela esaten da, biderkadura hori kurbaren azpiko azalera 1 dela ziurtatuko 
digun k konstante batekin zatitu behar dugulako dentsitate-funtzio zehatza lortzeko. k  hori 
honako integral honen bidez lortzen da: g(π) ∗ 𝑓(𝑦|π). Hortaz, 

𝑔(𝜋|𝑦) =
𝑔(𝜋) ∗ 𝑓(𝑦│𝜋)

∫ 𝑔(𝜋) ∗ 𝑓(𝑦│𝜋)
1

0

.              (2.2) 

 
 

2. Kapitulua 



 

PROPORTZIO BATERAKO INFERENTZIA BAYESTARRA  20  

 

 
Lehen begiratuan, izendatzailearen integralak arazoak sortuko dizkigula dirudi, zenbakizko 
kalkulu asko egin behar baitira balioa lortzeko. Ikusiko dugunez, berriz, dentsitate-funtzioen 
propietateak baliatuta, askotan ez dugu urrats hori egin behar izango. 

2.2 Aldez aurretiko banaketa uniformea 

Banaketa uniforme jarraitua ausazko aldagai jarraituetarako probabilitate-banaketen "familia" 
bat da, eta, banaketa horretan, ausazko aldagaiak probabilitate berdinarekin hartzen du balio 
bakoitza. Eremua a eta b parametroen bidez definituta dago, eta parametro horiek balio 
minimo eta maximoak dira. Banaketa forma laburtuan adierazten da maiz:  U(a, b).  

Banaketa uniforme jarraituaren probabilitate-dentsitatearen funtzioa honako hau da: 

𝑓(𝑥) = {  
1

𝑏 − 𝑎
𝑎 ≤ 𝑥 ≤ 𝑏

0 𝑥 < 𝑎 o 𝑥 > 𝑏 

 

Eta haren irudikapena, berriz, honako hau: 

 

 
 
 

U(a,b) banaketa baten dentsitate-funtzioa 

http://es.wikipedia.org/wiki/Distribuci%C3%B3n_de_probabilidad
http://es.wikipedia.org/wiki/Funci%C3%B3n_de_densidad_de_probabilidad
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Erraz ondoriozta daiteke banaketa uniforme baten batezbestekoa, mediana eta bariantza 
honela adieraz daitezkeela: 

𝑚 =
𝑎 + 𝑏

2
, 𝑀𝑒𝑑𝑖𝑎𝑛𝑎 =

𝑎 + 𝑏

2
,         𝑉𝑎𝑟 =  

(𝑏 − 𝑎)2

12
. 

Baldin eta a=0 eta b=1 bada, emaitzazko banaketari (U(0,1)) banaketa uniforme estandar 
deitzen zaio, eta beta(1,1). banaketaren baliokidea da. Bestalde, aldez aurretiko behar adina 
ezagutzarik ez dugunean, U(0,1) banaketa da nagusi inferentzia bayestarrean.  Hortaz, datuek 
eskaintzen diguten informazioan soilik oinarritutako emaitzak lortu nahi baditugu, π-ren balio 
posible guztiei pisu bera emango dien dentsitate-funtzio uniforme estandar bat erabili beharko 
dugu; hau da: 

𝑔(𝜋) = 1, 0 ≤ 𝜋 ≤ 1. 

Kasu horretan, nabaria da a posteriori banaketa egiantzaren proportzionala dela: 

𝑔(π|y) = ( 
𝑛
𝑦 ) π

𝑦(1 − π)𝑛−𝑦, 0 ≤ π ≤ 1. 

π-ren araberakoa ez den partea baztertu egin daiteke. Izan ere, π-ren balioa edozein izanik ere beti 

egongo den konstante bat da, eta, beraz, ez du eraginik a posteriori banaketan. ( 
n
y ) ezabatzean, 

beta(a∗, b∗) banaketa ikus dezakegu, non a∗ = y + 1 eta b∗ = n − y + 1, edota, era baliokidean, 
a* = a + e eta b* = b + f.  Beraz, erraza da π-ren a posteriori banaketa lortzea integralik egin behar 
izan gabe. 

2.3 Aldez aurretiko beta banaketa 

Askotan, balioak [0,1] tartean dituzten ausazko aldagai jarraituekin erabiltzen da beta banaketa, eta, 
horregatik, oso egokia da proportzioak modelatzeko.  Inferentzia bayestarrean, a priori banaketa 
gisa erabiltzen da maiz, behaketek banaketa binomiala dutenean. 

Dentsitate-funtzioa honela adierazten da, 𝛤(𝑐) Gamma funtzioa izanik: 

𝑓(𝑥; 𝑎, 𝑏) = {  

𝛤(𝑎 + 𝑏)

𝛤(𝑎)𝛤(𝑏)
𝑥𝑎−1(1 − 𝑥)𝑏−1 0 ≤ 𝑥 ≤ 1

0 𝑥 < 0 o 𝑥 > 1 

 

Banaketa horren alderdi positibo nagusietako bat banaketa enpiriko ugaritara doitzeko aukera 
da, oso forma desberdinak har baititzake banaketa definitzen duten a eta b parametroen 
balioen arabera.  

Ondorengo beta banaketen adibideetan, 𝑎 eta 𝑏 parametroek honako balio hauek hartzen 
dituzte: {0.5, 1, 2, 3}.  Ikus daitekeenez, a < b denean dentsitateak pisu handiagoa du 
ezkerraldean, eta a > b denean, berriz, eskuinaldean; a = b denean, funtzioa simetrikoa da. 
Azkenik, seigarren grafikoan argi eta garbi ikus daiteke 𝑏𝑒𝑡𝑎(1,1) banaketaren funtzioa 
banaketa uniformearen baliokidea dela [0,1] tartean. 
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Dakigunez, beta banaketa baten batezbestekoa, moda eta bariantza honela adierazten dira: 

𝑚 =
𝑎

𝑎 + 𝑏
, 𝑀𝑜𝑑𝑎 =

𝑎 − 1

𝑎 + 𝑏 − 2
,         𝑉𝑎𝑟 =  

𝑎𝑏

(𝑎 + 𝑏)2(𝑎 + 𝑏 + 1)
. 

Inferentzia bayestarrera itzuliz, π-rako erabilitako a priori banaketa-funtzioa beta(a, b) izanik: 

𝑔(𝜋; 𝑎, 𝑏) =
𝛤(𝑎 + 𝑏)

𝛤(𝑎)𝛤(𝑏)
𝜋𝑎−1(1 − 𝜋)𝑏−1, 0 ≤ 𝜋 ≤ 1. 

Bayesen teoremaren emaitzek konstanteekin biderkatzean aldatzen ez direla dakigunez gero, π-ren 
araberakoak ez diren parametroak baztertu egin daitezke, eta (3.1) ekuazioa izango dugu: 

𝑔(𝜋|𝑦) ∝ 𝜋𝑎−1(1 − 𝜋)𝑏−1 ∗ 𝜋𝑦(1 − 𝜋)𝑛−𝑦, 0 ≤ 𝜋 ≤ 1. 
𝑔(𝜋|𝑦) ∝ 𝜋𝑎+𝑦−1(1 − 𝜋)𝑏+𝑛−1, 0 ≤ 𝜋 ≤ 1. 
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Adierazpen horrek ondorengo banaketaren forma deskribatzen du π.-ren funtzio baten bidez. Berriz 
ere, beta banaketa bat jasotzen dugu 𝑎′ = 𝑎 + 𝑦 eta 𝑏′ = 𝑏 + 𝑛 − 𝑦 parametroekin. Hau da, 
arrakasta kopurua a parametroari gehitzen zaio, eta porrot kopurua, berriz, b parametroari. Era 
horretan, a posteriori banaketa lortzen dugu berriz, integralik egin behar izan gabe: 

𝑔(𝜋|𝑦) =
𝛤(𝑛 + 𝑎 + 𝑏)

𝛤(𝑦 + 𝑎)𝛤(𝑛 − 𝑦 + 𝑏)
𝜋𝑦+𝑎−1(1 − 𝜋)𝑛−𝑦+𝑏−1, 0 ≤ 𝜋 ≤ 1. 

Horregatik, behaketa binomialak ditugunean komeni da 𝑏𝑒𝑡𝑎(𝑎, 𝑏) banaketa bat erabiltzea. Izan 
ere, kalkuluak sinpleak dira eta, gainera, Bayesen teorema aplikatzean, familia bereko banaketa 
berri bat lortuko dugu. 

2.4 Aldez aurretiko banaketaren aukeraketa 

Bayesen teoremak gure aldez aurretiko usteak datuek ematen duten informazioarekin 
eguneratzeko aukera ematen digu.  Horregatik, datuak aztertu aurretik, garrantzitsua da gure 
ezagutzak era egokian adierazten jakitea. 

2.4.1 Aldez aurretiko informazio urriarekin 

Aldez aurretiko informazio gutxi dugunean, aurreko irudian proposatutako banaketa bat finka 
dezakegu a priori banaketa gisa. Adibidez, π-ren balioa oso txikia dela uste badugu, komenigarria 
izango litzateke honako banaketa hauetako bat erabiltzea: 𝑏𝑒𝑡𝑎(0.5,1), 𝑏𝑒𝑡𝑎(0.5,2), 𝑏𝑒𝑡𝑎(0.5,3), 
𝑏𝑒𝑡𝑎(1,2) edo 𝑏𝑒𝑡𝑎(1,3). Guztiek kalkulu errazak eskainiko dizkigute, eta emaitzak antzeko 
samarrak izango dira kasu guztietan. 

2.4.2 Aldez aurretiko informazio errealarekin 

Aukeratutako banaketa ahal den neurrian gure ustearekin bat etor dadin, ezagutzen dugunaren 
batezbesteko eta desbiderapen estandarra erabiltzea iradokitzen da. 𝜋0 proportzioaren a priori 
batezbestekoa eta 𝜎0 a priori desbiderapen estandarra izanik. 

Ikusi dugunez, 𝑏𝑒𝑡𝑎(𝑎, 𝑏) banaketa baten batezbestekoa honela adierazten da: 𝜋0 =
𝑎

𝑎+𝑏
; eta 

desbiderapen estandarra, berriz, honela:   𝜎0 = √
𝑎𝑏

(𝑎+𝑏)2(𝑎+𝑏+1)
 . Hortaz, 

𝑏

𝑎+𝑏
= 1 − 𝜋0 izanik, eta 

desbiderapen estandarrean adierazpen hori eta batezbestekoaren adierazpena ordeztuz gero, 

honako hau lortuko dugu: 𝜎0 = √
𝜋0(1−𝜋0)

(𝑎+𝑏+1)
. Horrela, beraz, ondorengo sistema ebatzita, gure 

𝑏𝑒𝑡𝑎(𝑎, 𝑏) banaketaren 𝑎 eta 𝑏 parametroak lortuko ditugu. 

{
 
 

 
 𝜋0 =

𝑎

𝑎 + 𝑏

𝜎0 = √
𝜋0(1 − 𝜋0)

(𝑎 + 𝑏 + 1)
  
                    (2.3) 
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2.4.3 Kontuan hartu beharreko alderdiak 

Komeni da aukeratutako banaketa marraztea, balioak arrazoizkoak direla eta gure ezagutzarekin bat 
datozela egiaztatzeko. Bat ez badatoz, 𝜋0 eta 𝜎0-ren balioak alda daitezke kurbak nahi dugun forma 
eduki arte. 

Bestalde, komeni da, halaber, aldez aurretikoaren lagin-tamaina baliokidea kalkulatzea. 

𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝜋) baten 𝜋̂ =
𝑦

𝑛
 proportzioak honako bariantza hau du: 

𝜋(1−𝜋)

𝑛
. Bariantza hori aldez 

aurretiko bariantzarekin berdinduz (a priori batezbestekoaren bidez): 

𝜋0 (1 − 𝜋0)

𝑛𝑒𝑞
=

𝑎𝑏

(𝑎 + 𝑏)2(𝑎 + 𝑏 + 1)
 . 

a

a+b
= π0 eta 

b

a+b
= 1 − π0 denez gero, lagin-tamaina baliokidea neq = a + b + 1 da. Hau da, 

aukeratu dugun banaketak ematen duen informazio kantitatea tamaina horretako ausazko lagin 
baten baliokidea da. Horrela, beraz, aukeratutako banaketa errealista den edo aldez aurretiko 
banaketa solidoegi batekin lan egiten ari garen egiaztatu ahal izango dugu. Kasu horretan, 
desbiderapen estandarraren balioa handitu beharko dugu gure a priori ezagutzaren pisua hain 
handia izan ez dadin. 

2.4.4 Aldez aurretiko banaketa jarraitu bat sortzea 

Demagun orain gure ustea ez dela behar bezala adierazten 𝑏𝑒𝑡𝑎(𝑎, 𝑏) banaketa baten bidez. Kasu 
horretan, gure ezagutzarekin bat datorren aldez aurretiko diskretu bat sor daiteke, eta, interpolazio 
bidez, jarraitu bihurtu. Bayesen teoremaren propietateei esker, ez da beharrezkoa funtzioa 
benetako dentsitate-banaketa bat izatea eragiten duen konstantea sartzea. Dena dela, egiantzaren 
eta aldez aurretikoaren arteko biderkaduraren integrala kalkulatu beharko da. 

2.4.5 Aldez aurretiko banaketaren eragina 

Lan egiteko erabiltzen ditugun datuen bolumena zenbat eta handiagoa izan, orduan eta txikiagoa 
izango da aldez aurretiko banaketaren eragina. Horrela, beraz, aldez aurretiko desberdin samar 
batzuetatik abiatu bagara ere, oso antzekoak diren a priori banaketak lortu ahal izango ditugu. 

2.4.6 Adibidea 

Ikastetxe bateko zuzendaria, matematikako irakaslea, ingeleseko irakaslea eta haur baten ama 
eztabaidatzen ari dira matematikako hurrengo azterketa gaindituko dutenen ehunekoari buruz. 
Zuzendaria oso baikorra da, bere kargu irakaslerik onenak dituelakoan baitago. Harentzat, a priori 
proportzioaren batezbestekoa 0,8 da, 0,08ko desbiderapenarekin. Hortaz, zuzendariaren ustearekin 
bat datorren 𝑏𝑒𝑡𝑎(𝑎, 𝑏) banaketaren parametroak lortuko ditugu, eta (2.3) sistema ebatziko dugu: 

{
0.8 =

𝑎

𝑎 + 𝑏

0.082 = 
0.8 ∗ 0.2

𝑎 + 𝑏 + 1

                  

Horrela, beraz, zuzendariarentzat, a=19.2 eta b=4.8 izango da, 𝑎 + 𝑏 + 1 = 25 lagin-tamaina 
baliokidea izanik.   
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Matematikako irakasleak ez du bere ustera ongi hurbiltzen den banaketarik aurkitzen, bere ustea 
forma trapezoidal batekin hobeto irudikatzen dela pentsatzen baitu. Ondorengo taulan, irakasle 
horrek balio posible bakoitzari ematen dion pisua jaso dugu. 

Balioa 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Pisua 0 0 0 1 2 3 3 3 2 1 0 

Balioak linealki interpolatuz, honela adieraz dezakegu irakaslearen aldez aurretiko banaketa: 

𝑔(𝜋) = {
10𝜋 − 2 0.2 ≤ 𝜋 < 0.5

3 0.5 ≤ 𝜋 < 0.7
−10𝜋 + 10 0.7 ≤ 𝜋 ≤ 1

 

Ingeleseko irakasleak ez daki ikasleek nolako trebetasunak dituzten matematikan. Horregatik, ez du 
kontuan hartzen a priori informaziorik, eta banaketa uniforme bat erabiltzen du. Hortaz, irakasle 
horrentzat, a=b=1 da, eta lagin-tamaina baliokidea, berriz, a+b+1=3. 

Azkenik, ikaslearen amak eskolara joaten zen garaiko oroitzapenetan oinarritzen du bere ezagutza. 
Oroitzapen horien arabera, 30 ikasle zeuden amaren ikasgelan, eta gainditu dutenen ehunekoa 
% 50 inguru zen.  Kasu horretan, honako sistema hau ebatzi behar dugu a priori 𝑏𝑒𝑡𝑎(𝑎, 𝑏) 
banaketaren parametroak lortzeko: 

{
0.5 =

𝑎

𝑎 + 𝑏
30 =  𝑎 + 𝑏 + 1

                     

Hortaz, amaren usteak 𝑏𝑒𝑡𝑎(24.5,24.5) banaketari jarraitzen dio, eta banaketa hori simetrikoa da a 
priori batezbestekoarekiko. 

Handik egun batzuetara, 100 ikaslek egin dute azterketa, eta 74k gainditu dute (y=74). 
Zuzendariaren, ingeleseko irakaslearen eta amaren ondorengo banaketak automatikoki lortzen dira: 

𝑏𝑒𝑡𝑎(19.2 + 74, 4.8 + 26) = 𝑏𝑒𝑡𝑎(93.2, 30.8), 

𝑏𝑒𝑡𝑎(1 + 74, 1 + 26) = 𝑏𝑒𝑡𝑎(75, 27), 

𝑏𝑒𝑡𝑎(24.5 + 74, 24.5 + 26) = 𝑏𝑒𝑡𝑎(98.5, 50.5). 

Matematikako irakaslearena lortzeko, berriz, kalkuluren bat egin beharko dugu. Horretarako, R 
lengoaian inplementatutako Bolstad liburutegia erabiliko dugu. 

Ondorengo irudietan, a priori eta a posteriori banaketak ditugu. 
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 Lehen hiru kasuetan, a priori banaketa guztiz desberdinekin hasita ere, a posteriori banaketak 
antzekoak dira. Adibidez, ingeleseko irakasleak gaiari lotutako aldez aurretiko usterik ez zuenez gero, 
behatutakoaren eragina jasotzen du. Zuzendariak, berriz, 25 ikasleko lagin baten inguruko ezagutzak 
zituen, eta 100 ikaslerekin lortutako datuak uste baino okerragoak izan direnez gero, zuzendariaren 
a posteriori banaketak ezkerrera egin du zertxobait. Eta, azkenik, amak 30 ikasleko lagin batean 
behatutakoarekin justifikatzen zuen bere ezkortasuna. 100 ikasleren azterketen emaitzak ikusi 
ondoren, gainditu dutenen proportzioaren inguruko ustea balio handiago batean zentratuta dago 
orain. 

2.5 Ondorengo banaketa 

A posteriori banaketak datuak behatu ondoren parametroaz dugun ezagutza adierazten du, eta gure 
a priori ezagutza (aldez aurretiko banaketa) eta datuak (egiantza) biltzen ditu.  

Normalean, ez da erraza izaten banaketa bat lehen begi-kolpean interpretatzea, eta horretan 
lagunduko diguten parametroak behar ditugu. Halaber, sinesgarritasun-tarte bayestarrak 
kalkulatzen dira; tarte bayestar horiek, konfiantza-tarte tradizionalek ez bezala, probabilitate 
kontzeptuarekin lan egiteko aukera ematen digute. 

2.5.1 Posizio-neurria eta zentrorako joeraren neurria 

Lehenik eta behin, hiru posizio-neurririk ezagunenak hartuko ditugu kontuan: ondorengo moda, 
ondorengo mediana eta ondorengo batezbestekoa. 

A posteriori moda ondorengo banaketa maximizatzen duen balioa da. Banaketa jarraitua bada, 
maximoak dentsitate-banaketa deribatu eta lortutako adierazpena 0rekin berdintzen du. 
Ondorengo banaketa 𝑏𝑒𝑡𝑎(𝑎′, 𝑏′) bat denean, deribatua honela adierazten da: 

g’(π|y) = (a′ − 1)𝜋𝑎
′−2 ∗ (1 − 𝜋)𝑏

′−1 + 𝜋𝑎
′−1 ∗ (−1)(𝑏′ − 1)(1 − 𝜋)𝑏

′−2. 

g’(π|y) 0rekin berdintzen badugu, honako hau lortuko dugu: 

𝑚𝑜𝑑𝑎 =
𝑎′ − 1

𝑎′ + 𝑏′ − 2
. 

Gainditu dutenen proportzioaren aldez 
aurretiko banaketak 

Zuzendaria 

Mateko irak. 

Ingeleseko irak. 

Ama 

 

Zuzendaria 

Mateko irak. 

Ingeleseko irak. 

Ama 

 

Gainditu dutenen proportzioaren ondorengo 
banaketak 
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Hala ere, modak alderdi negatibo batzuk ditu posizio-neurri gisa. Lehenik eta behin, moda 
banaketaren mutur batetik hurbil egon daiteke, eta kasu horretan ez litzateke oso adierazgarria 
izango.  Gainera, banaketak hainbat maximo lokal izan ditzake, eta prozesu honekin maximo eta 
minimo lokal guztiak aurkituko genituzke. 

Ondorengo mediana datu guztiak txikitik handira ordenatuta daudenean datu horien erdian dagoen 
balioa da. Baldin eta g(π|y) 𝑏𝑒𝑡𝑎(𝑎′, 𝑏′) bat bada, mediana honako honen soluzioa da: 

∫ g(π|y)𝑑π = 0.5
𝑚𝑒𝑑𝑖𝑎𝑛𝑎

0

. 

Mediana lokalizazio-neurri bikaina da, baina alde txar bat dauka: zenbakizko kalkuluak egin behar 
dira lortzeko. 

Azkenik, batezbestekoa oso neurri erabilia da. Batezbestekoa a posteriori banaketan espero den 
balioa da. 

𝑚′ = ∫ π g(π|y)𝑑π
1

0
.               (2.4) 

Batezbestekoa nabarmen aldatzen da banaketak ilara astun bat duenean. Are gehiago, banaketa 
alboratuta badago eta ilara astun bat badauka, batezbestekoaren balioa balio gehienetatik oso 
urrun gera daiteke. Baldin eta g(π|y) 𝑏𝑒𝑡𝑎(𝑎′, 𝑏′) bat bada, batezbestekoak honako balio hau 
izango du: 

𝑚′ =
𝑎′

𝑎′ + 𝑏′
.                     (2.5) 

𝑏𝑒𝑡𝑎(𝑎′, 𝑏′) banaketa 0ren eta 1en artean bornatuta dago, eta, beraz, ez du ilara astunik. Hortaz, 
batezbestekoa posizio-neurri egokia izango da a posteriori beta banaketetarako.  

2.5.2 Sakabanatze-neurriak 

A posteriori banaketa batean aztertu beharreko bigarren alderdi interesgarria banaketa horrek 
dituen balioen sakabanatzea da. Oso sakabanatuta badaude, parametroaren informazioa ez da 
zehatza izango,  datuen analisian lortutakoa gorabehera. 

Ondorengo bariantza honela adierazten da: 

𝑉𝑎𝑟(π|y) = ∫ (a′ − 1)𝑔(π|y)𝑑π.
1

0

                    (2.6) 

Banaketa 𝑏𝑒𝑡𝑎(𝑎′, 𝑏′) bat bada, 

𝑉𝑎𝑟(π|y) =
𝑎′𝑏′

(𝑎′ + 𝑏′)2(𝑎′ + 𝑏′ + 1)
.                  (2.7) 

Bariantza, batezbestekoa bezala, nabarmen aldatzen da ilara astunak dituzten banaketekin.  
Baldintza horietan, bariantza oso handia izango da, probabilitate gehienak banaketaren erdialdetik 
hurbil samar kontzentratuta badaude ere. Bestalde, bariantza unitate karratuetan ematen da, eta, 
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beraz, haren interpretazioa ez da oso intuitiboa. Arazo horiek konpontzeko, askoz ohikoagoa da 
ondorengo desbiderapen estandarrarekin (hots, bariantzaren erro karratuarekin) lan egitea. 

A posteriori banaketaren k-garren pertzentila 𝜋𝑘 balioa da, hau da, bere azpiko azaleraren % k 
biltzen duena. Balio hori honako adierazpen hau zenbakiz ebazteko erabiltzen da: 

𝑘 = 100 ∗ ∫ 𝑔(𝜋|𝑦)𝑑𝜋
𝜋𝑘

−∞

. 

Pertzentil batzuk bereziki garrantzitsuak dira: lehen kuartila (𝑄1) 25. pertzentila da, bigarren kuartila 
edo mediana 50. pertzentila, eta hirugarren kuartila (𝑄3) 75. pertzentila. 

Kuartilarteko heina (𝐼𝑄𝑅 = 𝑄3 − 𝑄1,) ilara astunek aldatzen ez duten sakabanatze-neurri bat da. 

2.4.6 Adibidea (jarraipena) 

Aurreko adibidera itzuliz, posizio-neurri eta sakabanatze-neurri batzuk kalkulatuko ditugu. 
Zuzendariaren, ingeleseko irakaslearen eta amaren kasuan, batezbestekoa eta desbiderapena 
zuzenean kalkula ditzakegu (2.4) eta (2.6) formulak erabiliz. Matematikako irakaslearen kasuan, 
berriz, (2.3) eta (2.5) ekuazioak erabili behar ditugu, eta zenbakiz ebatzi. Ondorengo taulan, 
lortutako neurrietako batzuk agertzen dira. Ondoriozta dezakegunez, amaren kasurako 
zenbatetsitako balioak izan ezik, ondorengo balioak antzeko samarrak dira, a priori banaketa 
desberdinetatik abiatu badira ere. Azpimarratu beharra dago ingeleseko irakaslea eta ama aldez 
aurretiko batez besteko proportzio beretik abiatu direla, baina ondorengo batezbestekoak 
desberdin samarrak direla. Diferentzia hori amak aldez aurretiko informazio gehiago zeukalako 
gertatu da.  

Pertsona Banaketa Batezbestekoa Mediana Desbid. est. IQR 

Zuzendaria 
Beta(19.2, 4.8) 0.8 0.8084153 0.08 0.1087928 

Beta(93.2, 30.8) 0.7516129 0.7529691 0.03864618 0.05229502 

Ingeleseko 
irakaslea  

Beta(1, 1) 0.5 0.5 0.2886751 0.5 

Beta(75, 27) 0.7352941 0.7368369 0.04347041 0.05888509 

Matem. 
irakaslea  

Diskretua 0.66 0.6 0.02666667 0.2 

Zenbakizkoa 0.7297143 0.7297702 0.04255308 0.05694306 

Ama 
Beta(24.5, 24.5) 0.5 0.5 0.08838835 0.1216675 

Beta(98.5, 50.5) 0.6832061 0.684141 0.04049275 0.05484126 
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2.7 Sinesgarritasun-tarte bayestarrak 

Sinesgarritasun-tarte bayestar bat zera da, parametro jakin bat edukitzeko (1 − 𝛼) ondorengo 
probabilitatea duten balioen hein bat. Tarte horiek tradizionalen aldean duten abantaila nagusia 
probabilitatea zuzenean interpretatzeko aukera ematen dutela da. 

2.7.1 π-rako sinesgarritasun-tarte bayestarra 𝝅 

Dakigunez, 𝑏𝑒𝑡𝑎(𝑎, 𝑏) banaketa batekin lan egiten bada, a posteriori banaketa 𝑏𝑒𝑡𝑎(𝑎′, 𝑏′) bat 
izango da. Banaketa hori banaketa normal baten bidez hurbil daiteke, batezbestekoari eta 
desbiderapenari eutsiz. 

(𝜋|𝑦)  da gutxi gorabehera 𝑁(𝑚′, (𝑠′)2). 

Non 

𝑚′ =
𝑎′

𝑎′ + 𝑏′
   y  (𝑠′)2 =

𝑎′𝑏′

(𝑎′ + 𝑏′)2(𝑎′ + 𝑏′ + 1)
. 

Horrela, beraz, π-ren (1 − 𝛼) ∗ 100%eko sinesgarritasun-eskualdea honako hau da gutxi 
gorabehera: 

𝑚′ ± 𝑧𝛼
2
∗ 𝑠′. 

Non 𝑧𝛼
2
 banaketa normalaren taulatik lortzen dugun balioa den. 95%eko sinesgarritasun-tarte 

baterako, 𝑧0.025 = 1.96 da. Hurbilketa horrek oso portaera ona dauka  denean. 𝑎, 𝑏 ≥ 10. 

2.7.2 Adibidea (jarraipena) 

Aurreko adibidearekin jarraituz, gainditu dutenen proportziorako % 95eko sinesgarritasun-tarteak 
kalkulatu ditugu. Lau kasuetan, formula zehatzaren (beta banaketa) eta hurbilketa normal baten 
bidez lortu ditugu. Taulako datuak behatu ondoren, hurbilketak balio zehatzetik oso hurbil daudela 
ondoriozta daiteke. 

Pertsona Ondorengo 
banaketa  

Sinesgarritasun-tarte 
zehatza  

Sinesgarritasun-tarte 
normala  

Zuzendaria Beta(93.2, 30.8) (0.6857768, 0.8128175) (0.6758678, 0.827358) 

Ingeleseko 
irakaslea  

Beta(75, 27) (0.6612032, 0.804115) (0.6500937, 0.8204946) 

Matem. irak.  Zenbakizkoa (0.6418581, 0.8086913) (0.6463118, 0.8131168) 

Ama Beta(98.5, 50.5) (0.6150072, 0.7482125) (0.6038418, 0.7625704) 
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3.  Batezbesteko normal baterako inferentzia bayestarra 

3.1 Sarrera 

Estatistikan eta probabilitatean, fenomeno errealetan hurbilduta gehien agertzen diren aldagai 
jarraituko probabilitate-banaketetako bati deitzen zaio banaketa normal, Gaussen banaketa edo 
banaketa gausstarra. Batez ere horregatik garatu dira hainbeste metodo estatistiko banaketa mota 
horretarako. 

𝑁(𝜇, 𝜎2) banaketa baten batezbestekoa  da, eta bariantza, berriz, 𝜎2; dentsitate-funtzioa honela 
adierazten da:  

𝑔(𝑥|𝜇, 𝜎2) =
1

√2𝜋 𝜎
𝑒
−

1
2𝜎2 

(𝑥−𝜇)2
,          ∞ < 𝑥 < ∞. 

Banaketaren dentsitate-funtzioaren grafikoak kanpai-forma dauka, eta parametro estatistiko jakin 
batekiko simetrikoa da. Kurba horri Gaussen kanpai deitzen zaio, eta funtzio gausstar baten grafikoa 
da. Ondoren, hainbat batezbesteko eta bariantza dituzten kanpai batzuk ikusiko ditugu. 

 

Probabilitateen banaketa normalen "familia" bat dago. Dakigunez, banaketa bakoitzak batezbesteko 
edo desbiderapen estandar desberdina izan dezake. Beraz, banaketa normalen kopurua mugagabea 
da, eta ezinezkoa izango litzateke μ eta σ-ren konbinazio bakoitzerako probabilitate-taula bat 
ematea. Arazo hori konpontzeko, banaketa normalen familiako "kide" bakarra erabiltzen da, hots, 0 

3. Kapitulua 

 

Banaketa Normala 𝑵(𝝁, 𝝈𝟐) 

http://es.wikipedia.org/wiki/Estad%C3%ADstica
http://es.wikipedia.org/wiki/Teor%C3%ADa_de_probabilidades
http://es.wikipedia.org/wiki/Distribuci%C3%B3n_de_probabilidad
http://es.wikipedia.org/wiki/Distribuci%C3%B3n_de_probabilidad
http://es.wikipedia.org/wiki/Distribuci%C3%B3n_de_probabilidad#Distribuciones_de_variable_continua
http://es.wikipedia.org/wiki/Gr%C3%A1fica
http://es.wikipedia.org/wiki/Funci%C3%B3n_de_densidad
http://es.wikipedia.org/wiki/Par%C3%A1metro_estad%C3%ADstico
http://es.wikipedia.org/wiki/Par%C3%A1metro_estad%C3%ADstico
http://es.wikipedia.org/wiki/Campana_de_Gauss
http://es.wikipedia.org/wiki/Funci%C3%B3n_gaussiana
http://es.wikipedia.org/wiki/Funci%C3%B3n_gaussiana
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batezbestekoa eta 1 desbiderapen estandarra duena; banaketa horri N(0,1) banaketa estandar 
normal deitzen zaio. Horrela, beraz, behaketa bakoitzeko batezbestekoa kenduz eta desbiderapen 
estandarrarekin zatituz gero, banaketa normal guztiak banaketa estandar bihur daitezke.  

3.1.1 Mugaren Teorema Zentrala 

Teorema honen arabera, 𝜇 batezbestekoa eta 𝜎2 bariantza dituen edozein banaketatik hartutako 

𝑦1, … , 𝑦𝑛 ausazko lagin batetik abiatuta, 
𝑦̅−𝜇

𝜎/√𝑛
 banaketa 𝑁(0,1) banaketa normal bat da mugan. 

Hau da, banaketak mugan duen forma banaketa normal estandar batena izango da, jatorrizko 
banaketa normala izan ala ez. Harrigarria bada ere, "muga" kontzeptua 𝑛 ≥ 25 den kasuan aplika 
daiteke. 

3.2 Bayesen teorema aldez aurretiko diskretu bat duen batezbesteko normal 
baterako 

3.2.1 Behaketa bakarrarekin 

 Har dezagun behaketa bakar bat  𝑓(𝑦|𝜇)  dentsitate-funtziotik, 𝜎2.  bariantza ezaguna duen 
banaketa normal bat dela suposatuta. 𝜎 desbiderapen estandarra bariantzaren erro karratua da, eta 
m balio posible ditugu batezbestekorako: 𝜇1,…, 𝜇𝑚. Balio horietatik abiatuta, behaketaren aurretik 
genuen ustea adieraziko duen aldez aurretiko banaketa bat aukeratzen da. Aldez aurretiko 
informaziorik izan ezean, arrakasta-probabilitate bera emango diegu balio guztiei. 

Egiantzak pisuak ematen dizkie balio posible guztiei, gertatzeko probabilitatearen arabera. 
Horretarako, behatutako balioa finkatu eta balio posible guztien arteko aldagaia aldatu behar dugu. 
Ondorengo banaketa aldez aurretiko banaketaren eta egiantzaren biderkaduraren proportzionala 
da. 

𝑔(𝜇|𝑦) =
𝑝𝑟𝑖𝑜𝑟 ∗ 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

∑𝑝𝑟𝑖𝑜𝑟 ∗ 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
 

3.2.1.1 Behaketa bakarraren egiantza 

𝑦|𝜇-ren baldintzazko banaketa normala da, eta batezbestekoa eta 𝜎2 bariantza ezaguna ditu. 
Gainera, dentsitate-funtzioa honako hau da: 

𝑓(𝑦|𝜇) =
1

√2𝜋 𝜎
 𝑒
−

1
2𝜎2 

(𝑦−𝜇)2
 

Egiantzaren forma honela adierazten da:  

𝑓(𝑦|𝜇) ∝ 𝑒
−

1
2𝜎2 

(𝑦−𝜇)2
            (3.1) 

Adierazpen horretan, y-k konstante jarraitzen du behatutako balioarekin, eta 𝜇 balio posibleen 
artean dago. Egiantzaren balioa lortzeko, bi aukera ditugu. Alde batetik, banaketa erreala banaketa 
normal estandar bihur daiteke Z balioa edo Z estatistikoa erabiliz, hau da, hautatutako balioaren (X) 
eta μ batezbestekoaren arteko distantzia, σ desbiderapen estandarrarekin zatitua. 
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Formalki, baldin eta X~N(μ, σ2)  bada, orduan ausazko aldagaia z =
X−μ

σ
 0 batezbestekoa eta 1 

desbiderapen estandarra duen banaketa normal estandar edo tipifikatu baten arabera banatzen da: 
N (0,1). Adierazi beharra dago normal estandarraren banaketa 0ren simetrikoa denez gero, 
𝑓(𝑧) = 𝑓(−𝑧). dela. Bigarren aukera, bestalde, egiantza zuzenean (3.1) formularen bidez lortzean 
datza. 

3.2.1.2 Adibidea 

Demagun batezbestekoa eta σ2 = 1 bariantza ezaguna dituen y|μ normala dela eta -k 2, 2.5, 3, 3.5 
eta 4 balioak probabilitate berdinarekin har ditzakeela. Behaketa bat ausaz hartu, eta  𝑦 = 3.2.  

Lehenik eta behin, z =
y−μ

σ
 dela jakinik eta normalaren ohiko taularako emandako datuak kontuan 

hartuta, honako taula hau sor dezakegu: 

 Aldez 
aurretikoa 

Z Egiantza Aldez 
aurretikoa*Egiantza 

Ondorengoa 

2 0.2 -1.2 0.1942 0.03884 0.1238 

2.5 0.2 -0.7 0.3123 0.06246 0.1991 

3 0.2 -0.2 0.3910 0.0782 0.2493 

3.5 0.2 0.3 0.3814 0.07628 0.2431 

4 0.2 0.8 0.2897 0.05794 0.1847 

    0.31372 1 

(3.1) ekuazioaren bidez, berriz, honako taula hau dugu (biribiltze-erroreak salbuetsita, baliokideak 
dira): 

 Aldez 
aurretikoa 

Egiantza Aldez 
aurretikoa*Egiantza 

Ondorengoa 

2 0.2 
𝑒−

1
2
(3.2−2)2 = 0.4868 

0.0974 0.1239 

2.5 0.2 
𝑒−

1
2
(3.2−2.5)2 = 0.4868 

0.1565 0.1990 

3 0.2 
𝑒−

1
2
(3.2−3)2 = 0.9802 

0.1960 0.2493 

3.5 0.2 
𝑒−

1
2
(3.2−3.5)2 = 0.9560 

0.1912 0.2432 

4 0.2 
𝑒−

1
2
(3.2−4)2 = 0.7261 

0.1452 0.1846 

   0.7863 1 
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3.2.2 Ausazko lagin batekin 

Normalean, behaketa bakar baten ordez 𝑦1, 𝑦2, . . . , 𝑦𝑛 behaketa izaten ditugu ausazko lagin batetik 
abiatuta, non 𝑦𝑗|𝜇 banaketa bakoitza normala den, batezbestekoarekin eta 𝜎2.  bariantza 

ezagunarekin. Ondorengo banaketa aldez aurretikoaren eta egiantzaren arteko biderkaduraren 
proportzionala da, eta laginaren behaketak independenteak direnez gero, baterako egiantza 
behaketa guztien egiantzaren biderkadurak ematen du: 

𝑓(𝑦1, . . . , 𝑦𝑛|𝜇) = 𝑓(𝑦1|𝜇) ∗ 𝑓(𝑦2|𝜇) ∗. . .∗ 𝑓(𝑦𝑛|𝜇). 

Kasu honetan, beraz, honela adierazten da Bayesen teorema, aldez aurretiko diskretu batekin: 

𝑔(𝜇|𝑦1, . . . , 𝑦𝑛) ∝ 𝑔(𝜇) ∗ 𝑓(𝑦1|𝜇) ∗ 𝑓(𝑦2|𝜇) ∗. . .∗ 𝑓(𝑦𝑛|𝜇). 

3.2.2.1 Ondorengo probabilitateak 

Ondorengo probabilitateak banan banan bila daitezke, era sekuentzialean edo denak batera. Lehen 
kasuan, behaketa baten ondorengoa hurrengo behaketaren aldez aurretiko bihurtzen da, baina 
metodo hori oso neketsua izan daiteke laginaren tamaina handitzen den heinean. Bigarren kasuan, 
behaketa bakoitza normala denez gero, guztiek egiantz normala dute, eta baterako egiantza honela 
adierazten da: 

𝑓(𝑦1, . . . , 𝑦𝑛|𝜇) ∝ 𝑒
−
1
2𝜎2

(𝑦1−𝜇)
2

∗ 𝑒
−
1
2𝜎2

(𝑦2−𝜇)
2

∗. . .∗ 𝑒
−
1
2𝜎2

(𝑦𝑛−𝜇)
2

, 

𝑓(𝑦1, . . . , 𝑦𝑛|𝜇) ∝ 𝑒
−
1
2𝜎2

[(𝑦1−𝜇)
2+(𝑦2−𝜇)

2+⋯+(𝑦𝑛−𝜇)
2]

 

Parentesi artean dauden gaiei dagokienez: 

[(𝑦1 − 𝜇)
2 + (𝑦2 − 𝜇)

2 +⋯+ (𝑦𝑛 − 𝜇)
2] = 𝑦1

2 − 2𝑦1𝜇 + 𝜇
2 +⋯+ 𝑦𝑛

2 − 2𝑦𝑛𝜇 + 𝜇
2 = 

= (𝑦1
2 +⋯+ 𝑦𝑛

2) − 2𝜇(𝑦1 +⋯+ 𝑦𝑛) + 𝑛𝜇
2 = 𝑛 [

(𝑦1
2 +⋯+ 𝑦𝑛

2)

𝑛
− 2𝜇𝑦̅ + 𝜇2] 

Orduan, 

𝑓(𝑦1, . . . , 𝑦𝑛|𝜇) ∝ 𝑒
−
𝑛
2𝜎2

[𝜇2−2𝜇𝑦̅+𝑦̅2−𝑦̅2+
(𝑦1

2+⋯+𝑦𝑛
2)

𝑛 ]
, 

𝑓(𝑦1, . . . , 𝑦𝑛|𝜇) ∝ 𝑒
−
𝑛
2𝜎2

[𝜇2−2𝜇𝑦̅+𝑦̅2]
𝑒
−
𝑛
2𝜎2

[
(𝑦1

2+⋯+𝑦𝑛
2)

𝑛
−𝑦̅2]

. 

 

𝑦1, 𝑦2, . . . , 𝑦𝑛 ausazko lagin normal baten egiantza 𝑦̅ lagin-batezbestekoaren egiantzaren 
proportzionala da.  parametroaren mende ez dagoen zatia sinplifikatuz, 

𝑓(𝑦1, . . . , 𝑦𝑛|𝜇) ∝ 𝑒
−

1
2𝜎2/𝑛

(𝑦̅−𝜇)2

. 
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Ikusten denez,  batezbestekoa eta 
𝜎2

𝑛
 bariantza dituen normal baten forma dauka egiantza horrek. 𝑦̅  

lagin-batezbestekoa ere  batezbestekoa eta 
𝜎2

𝑛
 bariantza dituen normal baten bidez banatuta dago, 

eta, beraz, ausazko laginaren baterako egiantza lagin-batezbestekoaren egiantzaren proportzionala 
da, honela adierazita: 

𝑓(𝑦̅|𝜇) ∝ 𝑒

−
1
2𝜎2

𝑛

(𝑦̅−𝜇)2

.                  (3.2) 

Hurrengo kapituluan ikusiko dugunez, formula horren bidez errazagoa eta eraginkorragoa da a 
posteriori probabilitateak kalkulatzea. 

3.2.2.2 Adibidea (jarraipena) 

Demagun orain 4ko tamainako ausazko lagin bat hartu dugula  batezbestekoa eta 𝜎2 bariantza 
dituen banaketa normal batetik: 3.2, 2.2, 3.6 eta 4.1. Lagin-batezbestekoa 𝑦̅ = 3.275 da, eta, haren 
egiantza erabiliz, honako emaitza hauek lor ditzakegu: 

 Aldez 
aurretikoa 

Egiantza Aldez 
aurretikoa*Egiantza 

Ondorengoa 

2 0.2 
𝑒
−

1
2∗1/4

(3.275−2)2

= 0.0387 
0.0077 0.0157 

2.5 0.2 
𝑒
−

1
2∗1/4

(3.275−2.5)2

= 0.3008 
0.0602 0.1228 

3 0.2 
𝑒
−

1
2∗1/4

(3.275−3)2

= 0.8596 
0.1719 0.3505 

3.5 0.2 
𝑒
−

1
2∗1/4

(3.275−3.5)2

= 0.9037 
0.1807 0.3685 

4 0.2 
𝑒
−

1
2∗1/4

(3.275−4)2

= 0.3495 
0.0699 0.1425 

   0.4904 1 

3.3 Bayesen teorema aldez aurretiko jarraitu bat duen batezbesteko normal 
baterako 

Aurreko atalean,  -k har zitzakeen balioak balio kopuru jakin batera mugatuta zeuden, baina 
errealistagoa da pentsatzea  -k edozein balio har dezakeela edo, gutxienez, tarte jakin batean 
dauden guztiak. Kasu horietan, komeni da aldez aurretiko banaketa jarraitu bat erabiltzea. Honela 
idatz dezakegu Bayesen teorema: 

𝑔(𝜇|𝑦1, . . . , 𝑦𝑛) ∝ 𝑔(𝜇) ∗ 𝑓(𝑦1, . . . , 𝑦𝑛|𝜇) 

Aldez aurretikoa diskretua zenean, egiantzaren eta aldez aurretikoaren biderkadura -ren balio 

guztien biderkaduren baturarekin zatitu behar genuen ondorengoa lortzeko. Banaketa jarraitua 
denean, prozedura baliokidea biderkadura horren integrala egitea da. Hau da: 
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𝑔(𝜇|𝑦1, . . . , 𝑦𝑛) =
𝑔(𝜇) ∗ 𝑓(𝑦1, . . . , 𝑦𝑛|𝜇)

∫𝑔(𝜇) ∗ 𝑓(𝑦1, . . . , 𝑦𝑛|𝜇)𝑑𝜇
                 (3.3) 

Banaketa normal baterako, ausazko laginaren egiantza 𝑦̅ lagin-batezbestekoaren egiantzaren 
proportzionala da. Orduan, 

𝑔(𝜇|𝑦1, . . . , 𝑦𝑛) =
𝑔(𝜇) ∗ 𝑒

−
1

2𝜎2/𝑛
(𝑦̅−𝜇)2

∫𝑔(𝜇) ∗ 𝑒
−

1
2𝜎2/𝑛

(𝑦̅−𝜇)2

𝑑𝜇

. 

3.3.1 -rako aldez aurretiko dentsitate laua (Jeffrey-ren aldez aurretikoa) 

Aldez aurretiko lauan, -k har ditzakeen balio guztiak probabilitate berekoak dira, eta guztiei pisu bera 
ematen zaie: 𝑔(𝜇) = 1. Aldez aurretiko laua ez da egiaz aldez aurretiko banaketa bat, eremuaren 
integrala ez baita 1, baina hori ez da arazoa. Gainera, a posteriori banaketaren integrala 1 izango da, 
eta hori da interesatzen zaiguna. 

3.3.1.1 Behaketa normal bat 

Demagun 𝑦 behaketa  batezbestekoa eta 𝜎2 bariantza dituen normal bat bezala banatutako 
behaketa bat dela. Proportzionaltasun-konstantea alde batera utzita, egiantza honela lortzen da: 

𝑓(𝑦|𝜇) ∝ 𝑒
−
1
2𝜎2

(𝑦−𝜇)2
. 

Aldez aurretikoa beti 1 denez gero, ondorengoa aurreko adierazpenaren proportzionala da. 

𝑔(𝜇|𝑦) ∝ 𝑒
−
1
2𝜎2

(𝜇−𝑦)2
. 

Ekuazio horretatik abiatuta, ondoriozta dezakegu ondorengoak 𝑦 batezbestekoa eta 𝜎2 bariantza 
dituen banaketa normal bati jarraitzen diola. 

3.3.1.2 Ausazko lagin normal bat 

Aurreko atal batean ikusi dugunez, banaketa normal batetik hartutako ausazko lagin baten egiantza 
𝑦̅ lagin-batezbestekoaren egiantzaren proportzionala da. Dakigunez, 𝑦̅ normal banatuta dago,  

batezbestekoarekin eta 
𝜎2

𝑛
 bariantzarekin. Orduan, konstantea alde batera uzten badugu, egiantza 

honela lortzen da: 

𝑓(𝑦̅ |𝜇) ∝ 𝑒
−

1
2𝜎2/𝑛

(𝑦̅ −𝜇)2

. 

Aldez aurretikoa beti 1 denez gero, ondorengoa aurreko adierazpenaren proportzionala da. 

𝑔(𝜇 |𝑦̅) ∝ 𝑒
−

1
2𝜎2/𝑛

(𝜇−𝑦̅ )2

 

Ekuazio horretatik abiatuta, ondoriozta dezakegu ondorengoak 𝑦̅ batezbestekoa eta 
𝜎2

𝑛
 bariantza 

dituen banaketa normal bati jarraitzen diola. 
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3.3.2 -rako aldez aurretiko dentsitate normala  

3.3.2.1 Behaketa normal bat 

Demagun  batezbestekoa eta 𝜎2 bariantza ezaguna dituen banaketa normal batetik hartutako 𝑦 
behaketa bat dugula. Demagun, halaber, 𝑚 batezbestekoa eta 𝑠2 bariantza dituen aldez aurretiko 
normal bat dugula.  ez duen zatia alde batera utzita, aldez aurretikoa eta egiantza honela lortzen 
dira: 

𝑔(𝜇) ∝ 𝑒
−
1
2𝑠2

(𝜇−𝑚)2
, 

𝑓(𝑦 |𝜇) ∝ 𝑒
−
1
2𝜎2

(𝑦 −𝜇)2
. 

Bi ekuazioen biderkadura honela adierazten da: 

𝑔(𝜇) ∗ 𝑓(𝑦 |𝜇) ∝ 𝑒
−
1
2[
(𝜇−𝑚)
𝑠2

2

+
(𝑦−𝜇)
𝜎2

2

]
  

∝ 𝑒
−
1
2[
𝜎2(𝜇2−2𝜇𝑚+𝑚2)+𝑠2(𝑦2−2𝑦𝜇+𝜇2)

𝑠2𝜎2
]
 

∝ 𝑒
−
1
2
[
(𝜎2+𝑠2)𝜇2−2(𝜎2𝑚+𝑠2𝑦)𝜇+𝑚2𝜎2+𝑦2𝑠2)

𝑠2𝜎2
]
 

(𝜎2+𝑠2)

𝜎2𝑠2
 gaia faktore komun gisa ateratzen, formula nabarmenak erabiltzen eta -ren mende ez 

dauden gaiak xurgatzen baditugu, honako hau lortuko dugu: 

∝ 𝑒
−

1
2𝜎2𝑠2/(𝜎2+𝑠2)

[𝜇2−2
(𝜎2𝑚+𝑠2𝑦)

𝑠2𝜎2
𝜇+(

(𝜎2𝑚+𝑠2𝑦)
𝜎2+𝑠2

)
2

]
 

∝ 𝑒
−

1
2𝜎2𝑠2/(𝜎2+𝑠2)

[𝜇2−
(𝜎2𝑚+𝑠2𝑦)
𝜎2+𝑠2

]
 

Horretan oinarrituta, ondoriozta dezakegu ondorengo banaketak honako batezbesteko eta 
bariantza hauek dituela: 

𝑚′ =
(𝜎2𝑚 + 𝑠2𝑦)

𝜎2 + 𝑠2
,       (𝑠′)2 =

𝜎2𝑠2

(𝜎2 + 𝑠2)
.                 (3.4) 

Hau da, 𝑁(𝑚, 𝑠2) aldez aurretikoarekin hasi eta 𝑁(𝑚′, (𝑠′)2) ondorengoarekin amaitu dugu. 
Horrek esan nahi du Bayesen teorema aplikatzean ez dela beharrezkoa izango integrala egitea, 
familia bereko bi banaketa baitira. 

3.3.1.3 Normal baten balioak eguneratzea 

(3.4) ekuazioko adierazpenak sinplifikatu egin daitezke. Aurrenik, banaketaren zehaztasuna 
definituko dugu, hau da, bariantzaren alderantzizko balioa. Zehaztasunak batukortasun-propietatea 
betetzen du, eta ondorengoa honela adierazten da: 
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1

(𝑠′)2
= (

𝜎2𝑠2

(𝜎2 + 𝑠2)
)

−1

=
(𝜎2 + 𝑠2)

𝜎2𝑠2
=
1

𝑠2
+
1

𝜎2
 

Hau da, ondorengo zehaztasuna aldez aurretiko zehaztasunaren eta behaketaren zehaztasunaren 
arteko baturaren berdina da. Ondorengo batezbestekoa, berriz, honela adierazten da: 

𝑚′ =
(𝜎2𝑚+ 𝑠2𝑦)

𝜎2 + 𝑠2
=

𝜎2

𝜎2 + 𝑠2
∗ 𝑚 +

𝑠2

𝜎2 + 𝑠2
∗ 𝑦. 

Sinplifikazioren bat eginez, ikusiko dugu ondorengo batezbestekoa aldez aurretiko 
batezbestekoaren eta behaketaren batezbestekoaren batezbesteko haztatua dela, pisuak 
ondorengo zehaztasunak izanik. 

𝑚′ =
1/𝑠2

1/𝜎2 + 1/𝑠2
∗ 𝑚 +

1
𝜎2

1
𝜎2
+
1
𝑠

2 ∗ 𝑦. 

Aldez aurretiko lauaren kasuan, bariantza infinitua da, eta, beraz, zehaztasuna 0 da. Hortaz, 
ondorengo zehaztasuna eta aldez aurretiko zehaztasuna berdinak izango dira, eta a posteriori 
bariantzak ere bai (𝜎2). 

1

𝜎2
= 0 +

1

𝜎2
 

Hala ere, aldez aurretiko horren a priori batezbestekoa ez dago oso ongi zehaztuta. Beraz, a 
posteriori batezbestekoak behaketaren balio bera duela ulertuko da. 𝑦. 

3.3.1.2 Ausazko lagin normal bat 

Demagun  batezbestekoa eta 𝜎2 bariantza ezaguna dituen banaketa normal batetik hartutako 
𝑦1, 𝑦2, . . . , 𝑦𝑛 ausazko lagin bat dugula. Honako aldez aurretiko banaketa normal hau izango dugu, 
m batezbestekoarekin eta 𝑠2 bariantzarekin: 

𝑔(𝜇) ∝ 𝑒
−
1
2𝑠2

(𝜇−𝑚)2
. 

𝑦̅ lagin-batezbestekoaren egiantza erabiliko dugu; batezbesteko hori  batezbestekoa eta 𝜎2/𝑛 

bariantza ezaguna dituen normal bat bezala banatuta dago. 𝑦̅-ren zehaztasuna 
𝑛

𝜎2
 da, hots, 

behaketen zehaztasun guztien batura. Gainera, ondorengo zehaztasuna aldez aurretiko 
zehaztasunaren eta 𝑦̅-ren zehaztasunaren arteko baturaren berdina da, eta ondorengo bariantza 
ondorengo zehaztasunaren erreziprokoa da. 

1

(𝑠′)2
=
1

𝑠2
+
𝑛

𝜎2
=
(𝜎2 + 𝑛𝑠2)

𝜎2𝑠2
               (3.5) 

Azkenik, ondorengo batezbestekoa aldez aurretiko batezbestekoaren eta 𝑦̅-ren batezbestekoaren 
batezbesteko haztatua da, pisuak ondorengo zehaztasunak izanik: 

𝑚′ =
1/𝑠2

𝑛/𝜎2 + 1/𝑠2
∗ 𝑚 +

𝑛/𝜎2

𝑛/𝜎2 + 1/𝑠2
∗ 𝑦̅.               (3.6) 
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3.4 Aldez aurretiko normala aukeratzea 

Aldez aurretiko banaketa aukeratzeko garaian, gure ezagutza ahal bezain ongien adieraztea da 
helburua. Bariantza ezaguneko banaketa normal batetik hartutako behaketen kasuan, -rako 
banaketak 𝑁(𝑚, 𝑠2) dira. Gure usteak horrelako banaketa baten bidez adierazten baditugu, erraza 
izango da gure ezagutza Bayesen teoremarekin eta (3.5) eta (3.6) ekuazioekin eguneratzea, ez baita 
beharrezkoa izango integralak zenbakiz kalkulatzea. 

Lehen urratsa gure ustea, 𝑚 aldez aurretiko batezbestekoa eta 𝑠 aldez aurretiko desbiderapen 
estandarra zer baliotan zentratuta dauden erabakitzea izango da. Horretarako, gure ezagutzaren 
arabera balio minimo eta maximo posibleak hartzea (m+x, m-x), haien diferentzia ateratzea eta 
emaitza 6rekin zatitzea izango da errazena. Lortutako balioak arrazoizko probabilitate bat emango 

die posibletzat hartu ditugun balioei. Hau da, 𝑠𝑑 =
(𝑚+𝑥)−(𝑚−𝑥)

6
=

2𝑥

6
=

𝑥

3
 izango da. Prozedura 

horren helburua 𝑃(𝑚 < 𝑚+ 𝑥) = 0.4987 probabilitatea bilatzea eta honako adierazpen hau 

tipifikatzea da:  𝑃 (𝑍 <
𝑥

𝑠
) = 0.4987. Normal estandarraren probabilitateen taulan oinarrituta, 

𝑥

𝑠
= 3⟹ 𝑠 =

𝑥

3
 lortuko dugu. 

Berriz ere, komeni da aldez aurretiko banaketaren lagin-tamaina baliokidea kontuan hartzea, behar 

bezala egokitzen den jakiteko. 𝑛𝑒𝑞 =
𝜎2

𝑠2
.  𝑛𝑒𝑞 handia izateak esan nahi du gure ezagutzak 

esanguratsuak izango direla, eta ebidentzia berri ugari beharko dira balio horietatik urruntzeko. 𝑛𝑒𝑞 

txikia bada, berriz, ondorengo ezagutzak behatutakoaren eragin handia izango du. 

Gure ezagutza behar bezala hurbilduko duen banaketa normalik aurkitu ezean, balio batzuk finkatu 
(bilatzen dugun balioa balio horien artean egotea espero dugu) eta elkarren artean interpolatu 
daitezke aldez aurretikoa lortzeko. Kasu horietan, ondorengo banaketa honako hau izango da: 

𝑔(𝜇|𝑦1, 𝑦2, . . . , 𝑦𝑛) =
𝑓(𝑦1, 𝑦2, . . . , 𝑦𝑛|𝜇) ∗ 𝑔(𝜇)

∫ 𝑓(𝑦1, 𝑦2, . . . , 𝑦𝑛|𝜇) ∗ 𝑔(𝜇)𝑑𝜇
. 

3.4.1 Adibidea 

Silvia, Leire, Ane eta Sara urmael baten aurrean daude, eta bertan dauden karpa gorrien luzeraren 
batezbestekoa kalkulatu nahi dute. Aldez aurretiko azterlan batzuengatik dakigunez, 2 cm-ko 
desbiderapen estandar ezaguna duen normal baten bidez banatzen da luzera. Silviak 40 cm-tan 
finkatu du bere aldez aurretiko batezbestekoa, eta uste du ezinezkoa dela luzera [28,52]. tartetik 

kanpo egotea. Hortaz, 𝑠 =
52−28

6
=

24

6
= 4 izango da, eta, beraz, Silviak 𝑁(40, 42). bat erabiliko du. 

Leirek, berriz, ez daki ezer karpei buruz, eta aldez aurretiko lau bat erabiltzea erabaki du. Anek, 
bestalde, bere aldez aurretikoak banaketa normala eduki ordez forma trapezoidala edukiko duela 
erabaki du. Horrela, beraz, 0ko pisua eman dio 8 balioari, 1eko pisua 14-30 balioei, eta berriz ere 
0koa 36 balioari. Azkenik, Sarak gogoratu du behin 50 cm-ko karpa bat ikusi zuela, eta informazio 
horretan oinarritu du bere ustea. Laginaren tamaina baliokidea 1 denez gero, bariantza honako hau 

izango da:  𝑠2 =
𝜎2

𝑛𝑒𝑞
= 22. Hortaz, aukeratutako banaketa 𝑁(50, 22) bat izango da. 

Ondoren, 12 karpako ausazko lagin bat hartu eta laginaren batezbestekoa kalkulatu dute: 𝑦̅ = 42 
cm. Silviak, Leirek eta Sarak beren batezbestekoa eta ondorengo desbiderapena kalkulatu dute (3.5) 
eta (3.6) ekuazioen bidez. Lehen kasuan, 



 

BATEZBESTEKO NORMAL BATERAKO  INFERENTZIA BAYESTARRA  39  

 

1

(𝑠′)2
=
1

42
+
12

22
⟹ 𝑠′ = 0.5714, 

𝑚′ =

1
42

1
0.57142

∗ 20 +

12
22

1
0.57142

∗ 22 = 41.95699 

Aldez aurretiko lauaren kasuan: 

1

(𝑠′)2
=
12

22
⟹ 𝑠′ = 0.5774,    𝑚′ = 42. 

Eta Sararen kasuan: 

1

(𝑠′)2
=
1

22
+
12

22
⟹ 𝑠′ = 0.5547, 

𝑚′ =

1
22

1
0.55472

∗ 40 +

12
22

1
0.55472

∗ 42 = 42.85086 

Hiru a posteriori banaketak normalak dira. Dena dela, Aneren kasuan (3.3) ekuazioa erabili behar da, 
eta, horretarako, zenbakizko integrazioa behar da. Ondorengo grafikoetan, gure datuen aldez 
aurretiko eta ondorengo banaketak ditugu irudikatuta. Azpimarratu beharra dago aldez aurretikoak 
marrazteko garaian Leire eta Aneren kurben azpiko eremua bat izatea eragiten duen konstantea 
hartu dugula kontuan.  

 

Lehen hiru banaketak ia berdinak dira, aldez aurretiko desberdinetatik abiatu badira ere. Hain zuzen 
ere, banaketak balio beraren inguruan zentratuta zeudelako eta aldez aurretiko ezagutza 
zehaztugabeetan oinarrituta zeudenez gero ezagutza horiek behatutako emaitzen eragin handia 
jaso dutelako gertatu da hori. Sararen ustea, berriz, alboratuago zegoen, baina behatutako 12 
karpen emaitzen ondorioz, haren ezagutzak balio nabarmen txikiago batean zentratuta daude orain. 

Karpa gorriaren luzeraren aldez aurretiko banaketak 

 
Karpa gorriaren luzeraren ondorengo banaketak 
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3.5 Batezbesteko normal baterako sinesgarritasun-tarte bayestarrak 

Zenbaitetan, interesgarria izan daiteke gure "post-data" ezagutza balio-hein jakin batean 
laburbiltzea eta, horren arabera, probabilitate-maila batekin balioak barruan egotea. Kontzeptu 
horri tarte bayestar deitzen zaio. Normalean, ilara berdinak dituzten tarteekin lan egingo dugu. 

3.5.1 Bariantza ezaguna 

𝑦1, 𝑦2, . . . , 𝑦𝑛 behaketak 𝑁(𝜇, 𝜎2) banaketa batetik hartutako ausazko lagin bat direnean, 𝑦̅ lagin-
batezbestekoa 𝑁(𝜇, 𝜎2/𝑛) da. Aldez aurretiko lau bat edo aldez aurretiko normal bat –𝑁(𝑚, 𝑠2)– 
erabiliz, -ren ondorengo banaketa, 𝑦̅ emanik, (𝑚′, (𝑠′)2) da. 

-rako (1 − 𝛼) ∗ 100%-eko sinesgarritasun-tarte bayestarra honako hau da: 

𝑚′ ± 𝑧𝛼
2
∗ 𝑠′.             (3.7) 

Non 𝑧𝛼
2
 normalaren probabilitate-taulan aurkituko dugun. Hortaz,  egiazko batezbestekoa tartearen 

barruan ez egoteko probabilitatea α da. 

3.5.2 Bariantza ezezaguna 

Bariantza ezezaguna denean, zehaztasuna ere ezezaguna da, eta, beraz, eguneratze-arauak ezin 
ditugu zuzenean aplikatu. Hasteko, laginaren bariantza kalkulatuko dugu: 

𝜎̂2 =
1

𝑛 − 1
∑(𝑦𝑖 − 𝑦̅)

2.

𝑛

𝑖=1

 

Ondoren, (3.4) eta (4.5) ekuazioak erabiliko ditugu (s′)2 eta m′ aurkitzeko, eta σ̂2 parametroa 
erabiliko dugu -ren ordez. σ2. 

Kasu horretan, ziurgabetasuna handiagoa da, 𝜎2 parametroa ere kalkulatu egin delako. Hori dela-
eta, tarteek zabalagoak izan beharko lukete. Helburu horrekin, normalaren taula estandarra erabili 
ordez Studenten t banaketa erabiliko dugu, 𝑑𝑓 = 𝑛 − 1 askatasun-gradurekin. Hortaz: 

𝑚′ ± 𝑡𝛼
2
∗ 𝑠′.            (3.8) 

3.5.3 Aldez aurretiko ez-normala 

Aldez aurretikoa normala ez denean, ondorengo banaketa ez-normal bat lortzen da Bayesen 
teoremaren eta zenbakizko integrazioaren bidez. Kasu horretan, (1 − 𝛼) ∗ 100%-eko 
sinesgarritasun-tartea lor daiteke, non 𝜇𝑙-k eta 𝜇𝑢-k honako hau beteko duten: 

∫ 𝑔(𝜇|𝑦1, 𝑦2, . . . , 𝑦𝑛)𝑑𝜇 = 1− 𝛼.
 𝜇𝑢

𝜇𝑙

 

𝜇𝑙  eta 𝜇𝑢 balioak ez dira bakarrak, eta, beraz, tarterik txikiena emango digutenak bilatuko ditugu. 
Gainera, honako hau ere bete beharko dute: 
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𝑔(𝜇𝑙|𝑦1, 𝑦2, . . . , 𝑦𝑛) = 𝑔(𝜇𝑢|𝑦1, 𝑦2, . . . , 𝑦𝑛). 

3.5.4 Adibidea (jarraipena) 

Silviak, Leirek eta Sarak (3.7) ekuazioaren bidez kalkula dezakete 95%-eko sinesgarritasun-tartea. 
Anek, berriz, zenbakiz kalkulatu behar du. Ikus daitekeenez, tarteak antzekoak dira, lehen hiru 
kasuetan batez ere. Hortaz, behatutako datuen eragina aldez aurretikoaren eragina baino askoz 
handiagoa dela ondorioztatuko dugu. 

Pertsona Ondorengo banaketa Sinesgarritasun-tartea 

Silvia 𝑁(41.96, 0.57142) (41.01927- 42.8991) 

Leire 𝑁(42, 0.57742) (41.05026- 42.94974) 

Ane Zenbakizkoa (40.85819-43.11781) 

Sara 𝑁(42.85, 0.57742) (41.93846-43.76326) 
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4. Batezbestekoen diferentziarako inferentzia bayestarra 

Konparazioak funtsezkoak dira zientzia esperimentalean. Ausazko bi lagin konparatzeko, ez da 
eraginkorra lagin bakoitzean lortutako behaketak banan-banan konparatzea. Horregatik, lagin-
batezbestekoak erabiliko ditugu konparazioak egiteko. Kasu gehienetan, banaketak normalak 
dira edo banaketa normal batera hurbil daitezke. Horregatik, bi banaketa normalen 
batezbestekoak konparatuko ditugu. Bestalde, lortutako ausazko laginak elkarren 
independenteak izaten dira maiz, eta, horregatik, independentziaren hipotesia betetzen dela 
suposatuko dugu kapitulu honetan. 

4.1 Bariantza ezaguna eta berdina duten bi banaketa normalen ausazko lagin 
independenteak 

Demagun 𝜎2 bariantza ezaguna dela. Bi laginak independenteak direnez gero, aldez aurretiko 
bi banaketa desberdin erabiliko ditugu batezbesteko bakoitzerako: 𝑁(𝑚1, 𝑠1

2)  eta 
𝑁(𝑚2, 𝑠2

2). Hortaz, ondorengo banaketak ere independenteak izango dira eta honela 
adieraziko dira: 

𝜇1|𝑦11, … , 𝑦𝑛11~𝑁(𝑚′1, (𝑠′1)
2) 

𝜇2|𝑦12, … , 𝑦𝑛22~𝑁(𝑚′2, (𝑠′2)
2) 

Adierazpen horretan, 𝑚′𝑖 eta (𝑠′𝑖)
2 (4.5) eta (4.6) formuletatik lortzen dira (𝑖 = 1,2 izanik).  

𝜇1|𝑦11, … , 𝑦𝑛11~𝑁(𝑚′1, (𝑠′1)
2) eta 𝜇2|𝑦12, … , 𝑦𝑛22~𝑁(𝑚′2, (𝑠′2)

2) elkarren independenteak 

direnez gero, batezbestekoak eta bariantzak ausazko aldagai independenteetarako dituzten 
propietateak erabil daitezke. Horrek ondorengo banaketa hau ematen digu: 𝜇𝑑 = 𝜇1 − 𝜇2. Hau da, 

𝜇𝑑|𝑦11, … , 𝑦𝑛11𝑦12, … , 𝑦𝑛22~𝑁(𝑚′𝑑 , (𝑠′𝑑)
2) 

Non 𝑚′𝑑 = 𝑚′1 −𝑚′2 eta (𝑠′𝑑)
2 = (𝑠′1)

2 + (𝑠′2)
2 diren. Hain zuzen ere, banaketa hori 

erabiliko dugu 𝜇1 − 𝜇2 batezbestekoen diferentzian inferitzeko. 

4.1.1 Batezbestekoen diferentziarako sinesgarritasun-tarteak, bariantza ezaguna eta berdina 
izanik 

Bariantza ezaguna denean, 𝑧𝛼
2
 balio kritikoa taula normal estandarizatutik lortzen da. Kasu horretan, 

honela adierazten da (1 − 𝛼) ∗ 100%-eko sinesgarritasun-tarte bayestarra 𝜇𝑑 = 𝜇1 − 𝜇2-rako: 

𝑚′𝑑 ± 𝑧𝛼
2
∗ 𝑠′𝑑 .         (4.1) 

Eta honela berridatz daiteke: 

4. Kapitulua 
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𝑚′1 −𝑚
′
2 ± 𝑧𝛼

2
∗ √(𝑠′1)

2 + (𝑠′
2
)2  .       (4.2)         

 Hau da, 𝜇1 − 𝜇2 konfiantza-tartean egoteko probabilitatea (1 − 𝛼) ∗ 100% da. 

4.1.2 Aldebakarreko hipotesi-test bayestarra 

Gure helburua 𝜇1 batezbestekoa 𝜇2 baino handiagoa den zehaztea bada, honako hipotesi-kontraste 
hau planteatu behar dugu: 

{
𝐻0:  𝜇𝑑 ≤ 0
𝐻1:  𝜇𝑑 > 0

 

Non 𝜇𝑑 = 𝜇1 − 𝜇2 batezbestekoen arteko diferentzia den. Era bayestarrean inferitzeko, 
hipotesi nuluaren ondorengo probabilitatea kalkulatu behar da, hots, 𝑃(𝜇𝑑 ≤ 0|𝑑𝑎𝑡𝑜𝑠), non 
𝑑𝑎𝑡𝑜𝑠 bi laginetako behaketak biltzen dituzten: 𝑦11, … , 𝑦𝑛11 eta 𝑦12, … , 𝑦𝑛22. Probabilitatea 

tipifikatuz, honako hau lortuko dugu: 

𝑃(𝜇𝑑 ≤ 0|𝑑𝑎𝑡𝑜𝑠) = 𝑃 (
𝜇𝑑 −𝑚′𝑑
𝑠′𝑑

≤
0 −𝑚′𝑑
𝑠′𝑑

) = 𝑃 (𝑍 ≤
0 −𝑚′𝑑
𝑠′𝑑

).      (4.3) 

Adierazpen horretan, 𝑍-k banaketa normal estandarrari jarraitzen dio. Normalaren 

probabilitate-taulatik abiatuta, 𝑃 (𝑍 ≤
−𝑚′𝑑

𝑠′𝑑
) probabilitatea α baino txikiagoa bada, hipotesi 

nulua baztertu egin daiteke maila horretan. Kasu horretan, 𝜇1 batezbestekoa 𝜇2 baino 
handiagoa dela ondoriozta daiteke. 

4.1.2 Aldebakarreko hipotesi-test bayestarra 

Inferentzia bayestarrak ez du aukerarik ematen ondorengo probabilitatea kalkulatzearen bidez 
 𝐻0:  𝜇𝑑 = 0 versus 𝐻1:  𝜇𝑑 ≠ 0 moduko aldebiko kontrasteak egiteko; aldez aurretiko jarraitu bat 
erabiltzen bada, ondorengoa ere jarraitua izango da, eta banaketa jarraitu orok puntu batean duen 
probabilitatea 0 da. Hori dela-eta, 𝜇𝑑-ren sinesgarritasun-tartea erabili beharko da. 0 tartean 
badago, ezin da hipotesi nulua baztertu; 0 tartean ez badago, berriz, batezbestekoen diferentzia 
onartzen da (1 − 𝛼) ∗ 100-eko probabilitatearekin. 

4.2 Bariantza ezezaguna eta berdina eta aldez aurretiko laua duten bi banaketa 
normalen ausazko lagin independenteak 

𝜇1 eta 𝜇2-rako aldez aurretiko lau bat erabili denez gero, (𝑠′1)
2 =

𝜎2

𝑛1
,   (𝑠′2)

2 =
𝜎2

𝑛2
, 𝑚′1 = 𝑦̅1 

eta 𝑚′2 = 𝑦̅2 izango da. 

4.2.1 Batezbestekoen diferentziarako sinesgarritasun-tarteak, bariantza ezezaguna eta 
berdina izanik 

Bariantzaren balioa ezezaguna denez gero, datuetatik abiatuta kalkulatu beharko da. 

𝜎̂𝑝
2 =

∑ (𝑦𝑖1 − 𝑦̅1)
2 + ∑ (𝑦𝑖2 − 𝑦̅2)

2𝑛2
𝑖=1

𝑛1
𝑖=1

𝑛1 + 𝑛2 − 2
.              (4.4) 
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Kasu horretan, sinesgarritasun-tarteak zabalagoak izango dira, bariantza zenbatestean 
ziurgabetasuna handiagoa baita. Balio kritikoa Studenten t banaketaren taulatik lortuko da 
(𝑛1 + 𝑛2 − 2 askatasun-gradurekin). Hortaz, 𝜇1 − 𝜇2-ren sinesgarritasun-tarte bayestar 
hurbildua honako hau da: 

𝑦̅1 − 𝑦̅2 ± 𝑡𝛼
2
∗ 𝜎̂𝑝√

1

𝑛1
+
1

𝑛2
.               (4.5) 

4.2.2 Aldebakarreko hipotesi-test bayestarra 

𝐻0:  𝜇𝑑 ≤ 0 versus 𝐻1:  𝜇𝑑 > 0 hipotesiak kontrastatu nahi badira (ausazko bi laginak  𝜎̂𝑝
2-ren 

arabera zenbatetsitako bariantza berdin ezezaguna duen normal batetik hartu direla eta 𝜇1 eta 
𝜇2-ren aldez aurretiko banaketak lauak direla suposatuta), 𝐻0-ren ondorengo probabilitatea 
kalkulatu beharko da (4.3) formularen bidez eta Studenten t banaketaren taula erabilita 
(𝑛1 + 𝑛2 − 2 askatasun-gradurekin), normalaren taula erabili ordez.  

4.2.3 Aldebiko hipotesi-test bayestarra 

Baldintza beretan, (4.5) ekuazioan eman den eta 𝑛1 + 𝑛2 − 2 askatasun-gradu dituen 𝜇1 − 𝜇2 -ren 
sinesgarritasun-tartea erabiliko dugu 𝐻0:  𝜇𝑑 = 0 versus 𝐻1:  𝜇𝑑 ≠ 0 kontrastatzeko. Berriz ere, α 
esangura-mailako hipotesi nulua baztertuko da 0a tartean ez badago. 

4.3 Bariantza desberdin ezagunak dituzten bi banaketa normalen ausazko lagin 
independenteak 

𝜇1 batezbestekoa eta 𝜎1
2 bariantza ezaguna dituen banaketa normal batetik hartutako 

𝑦11, … , 𝑦𝑛11 ausazko lagina eta 𝜇2 batezbestekoa eta 𝜎2
2 bariantza ezaguna dituen banaketa 

normal batetik hartutako 𝑦12, … , 𝑦𝑛22 ausazko lagina ditugu. Bi laginak elkarren 

independenteak dira. 

Aldez aurretiko independenteak erabiliko ditugu 𝜇1 eta 𝜇2-rako, banaketa normalak edo lauak. 
Laginak eta banaketak elkarren independenteak direnez gero, a posteriori banaketak ere 
independenteak izango dira. Horretarako, (3.5) eta (3.6) ataletan emandako formulak erabiliko 
ditugu. Hortaz, 𝜇1|𝑦11, … , 𝑦𝑛11~𝑁(𝑚′1, (𝑠′1)

2)-ren eta 𝜇2|𝑦12, … , 𝑦𝑛22~𝑁(𝑚′2, (𝑠′2)
2)-ren 

ondorengo banaketak ditugu. Orduan, 𝜇𝑑 = 𝜇1 − 𝜇2-ren ondorengo banaketa normala da. 

𝜇𝑑|𝑦11, … , 𝑦𝑛11𝑦12, … , 𝑦𝑛22~𝑁(𝑚′𝑑 , (𝑠′𝑑)
2) 

Non 𝑚′𝑑 = 𝑚′1 −𝑚′2 eta (𝑠′𝑑)
2 = (𝑠′1)

2 + (𝑠′2)
2. 

 
4.3.1 Batezbestekoen diferentziarako sinesgarritasun-tarteak, bariantza desberdinak eta 
ezagunak izanik 

Baldintza horietan, (1 − 𝛼) ∗ 100-eko sinesgarritasun-tarte bayestarra (4.1) eta (4.2) adierazpenen 
bidez lortzen da. 
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4.4 Bariantza desberdin ezezagunak dituzten bi banaketa normalen ausazko lagin 
independenteak 

Bariantzak desberdinak eta ezezagunak direnean, honela zenbatetsi behar dira datuetatik 
abiatuta: 

𝜎̂1
2 =

1

𝑛1 − 1
∑(𝑦𝑖1 − 𝑦̅1)

2 

𝑛1

𝑖=1

        𝑦           𝜎̂2
2 =

1

𝑛2 − 1
∑(𝑦𝑖2 − 𝑦̅2)

2 

𝑛2

𝑖=1

 

Zenbatesle horiek balio errealak baina ezezagunak balira bezala erabiliko dira eguneratze-
formuletan. Horrek ziurgabetasuna gaineratzen duenez gero, Studenten t banaketaren taula 
erabili beharko da balio kritikoak kalkulatzeko. Kasu horretan, ez dago garbi erabili beharreko 
askatasun-graduen kopurua zein den, baina honako balio hau biribiltzea gomendatzen da 
(Satterthwaite): 

(
𝜎̂1
2

𝑛1
+
𝜎̂2
2

𝑛2
)
2

(𝜎̂1
2/𝑛1)

2

𝑛1 + 1
+
(𝜎̂2

2/𝑛2)
2

𝑛2 + 1

.                     (4.6) 

4.4.1 Batezbestekoen diferentziarako sinesgarritasun-tarteak, bariantza desberdinak eta 
ezezagunak izanik 

Berriz ere (4.5) eta (4.6) formulak erabiliz, honela lortzen da 𝜇1 − 𝜇2-rako sinesgarritasun-tarte 
bayestar hurbildua: 

𝑚′1 −𝑚
′
2 ± 𝑡𝛼

2
∗ √(𝑠′1)

2 + (𝑠′
2
)2 .        

Non (4.6) adierazpena hurbilen dagoen zenbaki osora biribiltzen den askatasun-graduak 
lortzeko. 𝜇1 eta 𝜇2-rako aldez aurretiko banaketa lau independenteak aukeratu direnean, 
aurreko adierazpena honela berridatz daiteke: 

𝑚′1 −𝑚
′
2 ± 𝑡𝛼

2
∗ √

𝜎̂1
2

𝑛1
+
𝜎̂2
2

𝑛2
  .               (4.7)   

4.4.2 Aldebakarreko hipotesi-test bayestarra 

𝐻0:  𝜇𝑑 ≤ 0 versus 𝐻1:  𝜇𝑑 > 0 era bayestarrean α mailarekin kontrastatzeko, hipotesi 
nuluaren ondorengo probabilitatea kalkulatzen da. Horretarako, (5.3) ekuazioa erabiliko dugu, 
baina balio kritikoa normalaren taulatik lortu ordez, Studenten t banaketaren taulatik lortuko 
dugu, Satterthwaitek proposatutako askatasun-graduekin. Probabilitatea α baino txikiagoa 
bada, hipotesi nulua baztertu eta 𝜇1 > 𝜇2 ondorioztatzen da. 
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4.5 Proportzioen diferentziarako inferentzia bayestarra hurbilketa normal baten 
bidez 

Demagun orain π1 eta π2 proportzioak konparatu nahi ditugula, sarrerako adibidean bezala.  
Demagun, halaber, y|π𝑖  banaketek 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(n𝑖 , π𝑖) bati jarraitzen diotela eta elkarren 
independenteak direla (𝑖 = 1,2 izanik). Dakigunez, haien aldez aurretiko banaketak 
𝑏𝑒𝑡𝑎(a𝑖, b𝑖) banaketak badira, ondorengoak n𝑖  𝑏𝑒𝑡𝑎(𝑎𝑖

∗, 𝑏𝑖
∗) banaketak izango dira, non 

𝑎𝑖
∗ = a𝑖 + y𝑖  eta 𝑏𝑖

∗ = b𝑖 + y𝑖 diren. Horrela, beraz, π𝑑 = π1 − π2 diferentziaren ondorengo 
banaketa 𝑁(𝑚′𝑑 , (𝑠

′
𝑑)
2) normal baten bidez hurbil daiteke, non 

 

𝑚′𝑑 =
𝑎𝑐
∗

𝑎𝑐
∗ + 𝑏𝑐

∗ −
𝑎𝑡
∗

𝑎𝑡
∗ + 𝑏𝑡

∗ ,     (𝑠
′
𝑑)
2 =

𝑎𝑐
∗𝑏𝑐
∗

(𝑎𝑐
∗ + 𝑏𝑐

∗)2(𝑎𝑐
∗ + 𝑏𝑐

∗ + 1)
+ 

𝑎𝑡
∗𝑏𝑡
∗

(𝑎𝑡
∗ + 𝑏𝑡

∗)2(𝑎𝑡
∗ + 𝑏𝑡

∗ + 1)
. 

 

4.5.1 Proportzioen diferentziarako sinesgarritasun-tarteak 

π𝑑 = π1 − π2-rako (1 − 𝛼) ∗ 100%-eko sinesgarritasun-tarte bayestar hurbildua honela 
lortzen da:  

𝑚′𝑑 ± 𝑧𝛼
2
∗ 𝑠′𝑑 .         (4.8) 

4.5.2 Aldebakarreko hipotesi-test bayestarra 

𝐻0:  π𝑑 ≤ 0 versus 𝐻1:  π𝑑 > 0 kontrastatu nahi baditugu, hipotesi nuluaren ondorengo 
banaketa kalkulatuko dugu honela: 

𝑃(π𝑑 ≤ 0|𝑑𝑎𝑡𝑜𝑠) = 𝑃 (
π𝑑 −𝑚′𝑑
𝑠′𝑑

≤
0 −𝑚′𝑑
𝑠′𝑑

) = 𝑃 (𝑍 ≤
0 −𝑚′𝑑
𝑠′𝑑

).      (4.9) 

Probabilitatea α baino txikiagoa bada, hipotesi nulua baztertu eta π1 > π2 ondorioztatuko 
dugu.  

4.5.3 Aldebiko hipotesi-test bayestarra 

Aitzitik, 𝐻0:  π𝑑 = 0 versus 𝐻1:  π𝑑 ≠ 0 kontrastatu nahi baditugu, (4.8) ekuazioak emandako 
sinesgarritasun-tartea aztertu beharko dugu. 0a tartean ez badago, hipotesi nulua baztertu eta 
lagin bakoitzaren proportzioak desberdinak direla onartuko da. 
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5. Erregresio linealerako inferentzia bayestarra 

Zenbaitetan, interesgarria izaten da bi aldagairen (x eta y) arteko erlazioa modelatzea. 
Horretarako, iragartzen eta x-ek emandako informaziotik abiatzen lagunduko digun ekuazioa 
bilatzen da. 

Demagun n datu-bikotez osatutako datu-base bat dugula, hots, (𝑥𝑖, 𝑦𝑖), 𝑖 = 1,… , 𝑛. Lehenik 
eta behin, komeni da scatterplot batean puntu guztiak marraztea, haien artean dagoen 
erlazioa intuitzen saiatzeko. Puntuak modurik sinpleenean erlazionatzen dituen ekuazioa 
𝑦 = 𝛼0 + 𝛽𝑥 ekuazio lineala da. Ondoren, karratu txikienen metodoaz hitz egingo dugu. Izan 
ere, metodo hori da erabiliena 𝛼0 eta  zenbatesteko. 𝛽. 

5.1 Karratu txikienak 

Grafikoan, infinitu lerro marraz daitezke; batzuk ongi samar doituko dira puntuetara, eta beste 
batzuk, berriz, ez hain ongi. Hondarra puntu baten eta erregresio-lerroaren arteko distantzia 
bertikala da. Beraz, distantzia zenbat eta txikiagoa izan, orduan eta hobea izango da puntu 
zehatz horrekiko doikuntza.  

Karratu txikienen metodoa hondarren karratuen batura minimizatuko duen zuzena aurkitzean 
eta oro har hobekien doitzen den zuzena lortzean datza.  

5.1.1 Ekuazio normalak eta karratu txikienen zuzena 

y = α0 + βx adierazpeneko hondarren karratuen batura honako hau da: 

𝑆𝑆𝑟𝑒𝑠(𝛼0, 𝛽) =∑[𝑦𝑖 − (𝛼0 + 𝛽𝑥𝑖)]
2

𝑛

𝑖=1

.                   (5.1) 

𝑆𝑆𝑟𝑒𝑠 minimizatzen duten 𝛼0 balioak eta 𝛽 malda aurkitzeko, (6.1) ekuazioa 𝛼0 eta 𝛽-rekiko 
deribatu, haiek 0rekin berdindu eta ekuazioen sistema ebazten da. Hau da, 

𝜕𝑆𝑆

𝜕𝛼0
=∑2[𝑦𝑖 − (𝛼0 + 𝛽𝑥𝑖)]

𝑛

𝑖=1

(−1) = 0 ⟺ 

⟺∑𝑦𝑖

𝑛

𝑖=1

−∑𝛼0

𝑛

𝑖=1

−∑𝛽𝑥𝑖

𝑛

𝑖=1

= 0 

⇓ 

𝑦̅ − 𝑛𝛼0 − 𝛽𝑥̅ = 0      (5.2) 

  

5. Kapitulua 
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Bestalde, 𝛽-rekiko deribatuz: 

𝜕𝑆𝑆

𝜕𝛽
=∑2[𝑦𝑖 − (𝛼0 + 𝛽𝑥𝑖)]

𝑛

𝑖=1

(−𝑥𝑖) = 0 ⟺ 

⟺∑𝑥𝑖𝑦𝑖

𝑛

𝑖=1

−∑𝛼0𝑥𝑖

𝑛

𝑖=1

−∑𝛽𝑥𝑖
2

𝑛

𝑖=1

= 0 

⇓ 

𝑥𝑦̅̅ ̅ − 𝛼0𝑥̅ − 𝛽𝑥
2̅̅ ̅ = 0      (5.3) 

(6.2) eta (6.3) ekuazioek ekuazio normalen sistema osatzen dute. (6.2) ekuaziotik abiatuta, 𝛼0  
𝛽-ren arabera uzten da, eta (6.3) ekuazioan lortutako adierazpena aldatzen da. 

𝑥𝑦̅̅ ̅ − (𝑦̅ − 𝛽𝑥̅)𝑥̅ − 𝛽𝑥2̅̅ ̅ = 0 ⟺ 

⟺ 𝑥𝑦̅̅ ̅ − 𝑦̅𝑥̅ + 𝛽𝑥̅𝑥̅ − 𝛽𝑥2̅̅ ̅ = 0 

⟺𝛽(𝑥̅𝑥̅ − 𝑥2̅̅ ̅) = 𝑦̅𝑥̅ − 𝑥𝑦̅̅ ̅ 

Hortaz, karratu txikienen maldak honako adierazpen hau dauka: 

𝐵 =
𝑦̅𝑥̅ − 𝑥𝑦̅̅ ̅

(𝑥̅𝑥̅ − 𝑥2̅̅ ̅)
           (5.4) 

(6.2) ekuaziora itzuliz eta maldaren balioa aldatuz, honako hau dugu: 

𝐴0 = 𝑦̅ − 𝐵𝑥̅      (5.5) 

Hortaz, karratu txikienen bidez lortutako zuzena 𝑦 =  𝐴0 + 𝐵𝑥 da. 

5.1.2 Karratu txikienen zuzenaren alternatiba 

Maldak eta 𝑦 interzeptuaren gaineko beste edozein puntuk ere zuzena finkatzeko aukera 
ematen digute. Demagun 𝐴𝑥̅ karratu txikienen zuzenak -en zuzen bertikala mozten duen 
puntua dela. 𝑥̅. 

𝐴𝑥̅ = 𝐴0 +𝐵𝑥̅ = 𝑦̅ 

Hau da, karratu txikienen zuzena (x̅, y̅) puntutik igarotzen da, eta oso baliagarria izango zaigun 
honako ekuazio hau lor daiteke: 

𝑦 = 𝐴𝑥̅ + 𝐵(𝑥 − 𝑥̅) = 𝑦̅ + 𝐵(𝑥 − 𝑥̅)        (5.6) 

5.1.3 Karratu txikienen zuzenaren inguruko bariantzaren estimazioa 

Hona hemen karratu txikienen zuzenaren inguruko bariantzaren estimazioa: 
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𝜎̂2 =
∑ [𝑦𝑖 − (𝐴𝑥̅ + 𝐵(𝑥𝑖 − 𝑥̅))]

2𝑛
𝑖=1

𝑛 − 2
, 

Beraz, hondarren karratuen batura da, n − 2-rekin zatitua, Ax̅ eta B-ren estimazioak 
erabiltzearen ondorioz. 

5.1.4 Adibidea 

Enpresa batean, produktu bat salgai jartzen denean zer hezetasun-maila duen jakin nahi dute. 
Dena dela, produktua burututa dagoenean ez da ekonomikoki bideragarria hezetasuna 
neurtzea. Horregatik, hezetasuna produktua amaitu aurreko fasean neurtzea eta balio 
horretatik abiatuta amaierako hezetasun-maila aurresatea pentsatu dute. Bildu diren 25 
laginetan, 𝑥 aldagaiak aldez aurretiko hezetasun-maila neurtzen du, eta 𝑦 aldagaiak, berriz, 
amaierako hezetasun-maila. Honako zenbakizko emaitza hauek lortu dira: 𝑥̅ = 14.3888, 

𝑦̅ = 14.2208, 𝑥2̅̅ ̅ = 207.0703, 𝑦2̅̅ ̅ = 202.3186  eta  𝑥𝑦̅̅ ̅ = 204.6628. 

Karratu txikienen erregresio-zuzena lortzeko, maldaren balioa behar dugu, eta honela lortzen 
da: 

𝐵 =
𝑥𝑦̅̅ ̅̅ − 𝑥̅𝑦̅

𝑥2̅̅ ̅− (𝑥̅)
2
=
204.6628 − 14.3888 ∗ 14.2208

207.0703 − (14.3888)
2

= 1.29963. 

Hortaz, karratu txikienen zuzena honako hau da: 𝑦 = 14.2208+ 1.29963 ∗ (𝑥 − 14.2208). 

 𝑦̂𝑖 = 𝑦̅ + 𝐵(𝑥𝑖 − 𝑥̅) balio doituak,  𝑦 − 𝑦̂ hondarrak eta haien karratuak (𝑖 = 1,… ,25 
izanik) lortzen dira. Hortaz, karratu txikienen bidez zenbatetsitako bariantza eta desbiderapena 
honako hauek dira: 

𝜎̂2 =
∑ (𝑦𝑖−𝑦̂𝑖)

2𝑛
𝑖=1

𝑛−2
=

0.801882

23
= 0.0348644  ⟹      𝜎̂ = √0.034864 = 0.18672 

5.2 Erregresio lineal sinplearen hipotesia 

Karratu txikienen metodoa teknika ez-parametrikotzat hartzen da, ez baitu datuen banaketa 
erabiltzen. Maldaren eta interzeptuaren balioan inferitzeko, hipotesi batzuk hartu behar dira. 

Parametrizazio alternatiboa erabiliz gero, honako hau lortuko dugu: 

𝑦𝑖 = αx̅ + 𝛽(𝑥𝑖 − 𝑥̅) + 𝑒𝑖, 

non αx̅  𝑦-ren batez besteko balioa den (𝑥 = 𝑥̅ izanik), eta 𝛽 malda den. 𝑒𝑖 errore bakoitza 
normal banatuta dago 0 batezbestekoarekin eta 𝜎2 bariantza ezagunarekin, eta erroreek 
bariantza konstantea dute.  Gainera, erroreak elkarren independenteak dira. Hortaz, 𝑦𝑖|𝑥𝑖-k 
banaketa normala dauka, αx̅ + 𝛽(𝑥𝑖 − 𝑥̅) batezbestekoarekin eta 𝜎2 bariantzarekin, eta 𝑦𝑖|𝑥𝑖 
guztiak elkarren independenteak dira (𝑖 = 1, . . 𝑛 izanik).  

5.3 Bayesen teorema erregresio-eredurako 

Bayesen teorema honela laburbil daiteke: 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ 𝑝𝑟𝑒𝑣𝑖𝑎 ∗ 𝑣𝑒𝑟𝑜𝑠𝑖𝑚𝑖𝑙𝑖𝑡𝑢𝑑, 
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Horregatik, egiantza finkatu eta eredurako aldez aurretikoa erabaki behar da. 

5.3.1 𝛃 eta -ren baterako egiantza 𝛂𝐱̅ 

i-garren behaketaren baterako egiantza haren dentsitate-funtzioa da, αx̅ eta β parametroen 
funtzio gisa ikusita, non (𝑥𝑖 , 𝑦𝑖) balio finkoak diren. Hortaz, parametrorik ez duen zatia alde 
batera utzita, i  behaketaren egiantza  funtzio honen bidez lortzen da: 𝐿: 

𝐿𝑖(αx̅, β) ∝ 𝑒
−
1
2𝜎2

[𝑦𝑖−(αx̅+β(𝑥𝑖−𝐱̅))]
2

  

Behaketak elkarren independenteak direnez gero, lagin osoaren egiantza behaketa guztien 
egiantzen biderkadura da. 

𝐿𝑚𝑢𝑒𝑠𝑡𝑟𝑎(αx̅, β) ∝∏𝑒
−
1
2𝜎2

[𝑦𝑖−(αx̅+β(𝑥𝑖−𝐱̅))]
2

. 

Esponentzialaren propietateak aplikatuz gero, 

𝐿𝑚𝑢𝑒𝑠𝑡𝑟𝑎(αx̅, β) ∝ 𝑒
−
1
2𝜎2

[∑ [𝑦𝑖−(αx̅+β(𝑥𝑖−𝐱̅))]
2
]𝑛

𝑖=1 . 

Kako zuzenen arteko adierazpena honela berridatz daiteke: 

[∑[𝑦𝑖 − (αx̅+β(𝑥𝑖 − 𝐱̅))]
2
]

𝑛

𝑖=1

= [∑[𝑦𝑖 − 𝑦̅ + 𝑦̅ − (αx̅ + β(𝑥𝑖 − 𝑥̅))]
2
]

𝑛

𝑖=1

 

⇓ 

∑(𝑦𝑖 − 𝑦̅)
2

𝑛

𝑖=1

+ 2∑(𝑦𝑖 − 𝑦̅)(

𝑛

𝑖=1

𝑦̅ − (αx̅ + β(𝑥𝑖 − 𝑥̅))) +∑(𝑦̅ − (αx̅ + β(𝑥𝑖 − 𝑥̅)))
2

𝑛

𝑖=1

. 

𝑆𝑆𝑦 = ∑ (𝑦𝑖 − 𝑦̅)
2𝑛

𝑖=1 , 𝑆𝑆𝑥𝑦 = ∑ (𝑦𝑖 − 𝑦̅)(𝑥𝑖 − 𝑥̅)
𝑛
𝑖=1  eta 𝑆𝑆𝑥 = ∑ (𝑥𝑖 − 𝑥̅)

2𝑛
𝑖=1  hartuta, aurreko 

adierazpena honela sinplifikatzen da: 

𝑆𝑆𝑦 − 2𝛽𝑆𝑆𝑥𝑦 + 𝛽
2𝑆𝑆𝑥 + 𝑛(𝛼𝑥̅ − 𝑦̅)

2. 

Hortaz, baterako egiantza honela idatz daiteke: 

𝐿𝑚𝑢𝑒𝑠𝑡𝑟𝑎(αx̅, β) ∝ 𝑒
−
1
2𝜎2

[𝑆𝑆𝑦−2𝛽𝑆𝑆𝑥𝑦+𝛽
2𝑆𝑆𝑥+𝑛(𝛼𝑥̅−𝑦̅)

2]
, 

𝐿𝑚𝑢𝑒𝑠𝑡𝑟𝑎(αx̅, β) ∝ 𝑒
−
1
2𝜎2

[𝑆𝑆𝑦−2𝛽𝑆𝑆𝑥𝑦+𝛽
2𝑆𝑆𝑥]] ∗ 𝑒

−
1
2𝜎2

[𝑛(𝛼𝑥̅−𝑦̅)
2]
. 

 
Lehen gaian 𝑆𝑆𝑥  faktore komun gisa ateratzen, biderkadura nabarmenaren formulak 
aplikatzen eta ezein parametroren mende ez dauden gaiak alde batera uzten baditugu,  

𝐿𝑚𝑢𝑒𝑠𝑡𝑟𝑎(αx̅, β) ∝ 𝑒
−

1
2𝜎2/𝑆𝑆𝑥

[𝛽− 
𝑆𝑆𝑥𝑦
𝑆𝑆𝑥

]
∗ 𝑒

−
1

2𝜎2/𝑛
[(𝛼𝑥̅−𝑦̅)

2]
. 

Kontuan hartu behar da 
𝑆𝑆𝑥𝑦

𝑆𝑆𝑥
= 𝐵 dela (karratu txikienen bidez lortutako malda), eta 𝑦̅ = 𝐴𝑥̅ 

(karratu txikienen bidez zenbatetsitako interzeptua 𝑥 = 𝑥̅ lerro bertikalean).  Hortaz, bi 
egiantzen biderkaduraren bidez lortzen da baterako egiantza: 
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𝐿𝑚𝑢𝑒𝑠𝑡𝑟𝑎(αx̅, β) ∝ 𝐿𝑚𝑢𝑒𝑠𝑡𝑟𝑎(αx̅) ∗ 𝐿𝑚𝑢𝑒𝑠𝑡𝑟𝑎( β), 

Non   

𝐿𝑚𝑢𝑒𝑠𝑡𝑟𝑎(αx̅) ∝ 𝑒
−

1

2𝜎2/𝑆𝑆𝑥
[𝛽− 𝐵]

   eta  𝐿𝑚𝑢𝑒𝑠𝑡𝑟𝑎( β) ∝ 𝑒
−

1

2𝜎2/𝑛
[(𝛼𝑥̅−𝐴𝑥̅)

2]
. 

 

Baterako egiantza bi egiantz independenteren biderkadurarekin faktorizatu da, eta, beraz, 
egiantz indibidualak independenteak dira. Ikus daitekeenez, β maldaren egiantza 𝐵 
batezbestekoa eta 2𝜎2/𝑆𝑆𝑥 bariantza dituen normal bat da, eta αx̅-ren egiantza normala da, 
𝐴𝑥̅ batezbestekoarekin eta 𝜎2/𝑛 bariantzarekin. 

5.3.2 𝛃 eta -ren aldez aurretiko baterako banaketa 𝛂𝐱̅ 

Baterako egiantza baterako aldez aurretikoarekin biderkatzen bada, biderkadura ondorengo 
baterakoaren proportzionala izango da. Aldez aurretiko baterakoa bi aldez aurretiko 
independente eta indibidualen arteko biderkadura da, eta bi aldez aurretiko horiek normalak 
edo lauak izan daitezke. 

𝑔(αx̅, β) = 𝑔(αx̅) ∗ 𝑔( β), 

5.3.2.1 Aldez aurretiko normala 

αx̅-rako aldez aurretiko batezbestekoa honela lortzen da: 𝑚αx̅. Ondoren, 𝑦,-k har ditzakeen 

balio maximoa eta minimoa hartuko dira, eta 𝑠αx̅ aldez aurretiko desbiderapena bi balio horien 

diferentzia 6rekin zatituta lortuko da. 

Malda nulua izan daitekeela kontuan hartuta, β-ren aldez aurretiko batezbestekoa 𝑚β = 0. dela 

finkatzen da. Arestian azaldutako prozedura erabiliz, 𝑠β kalkulatuko litzateke, eta gure aldez 

aurretiko ezagutza honela adieraziko litzateke: 𝑁(𝑚β, 𝑠β
2). 

 5.3.3 𝛃 eta -ren ondorengo baterako banaketa 𝛂𝐱̅ 

Ondorengo baterako banaketa aldez aurretiko banaketaren eta baterako egiantzaren 
biderkaduraren proportzionala da. 

𝑔(αx̅, β|data) ∝ 𝑔(αx̅, β) ∗ 𝐿𝑚𝑢𝑒𝑠𝑡𝑟𝑎(αx̅, β), 

Adierazpen horretan, (𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛) bikote ordenatuen multzoa da data. Ondorengo 
marjinalak erabiliz gero, honela berridatz dezakegu ekuazioa:  

𝑔(αx̅, β|data) ∝ 𝑔(αx̅|data) ∗ 𝑔(β|data). 

Ondorengo marjinal bakoitza banaketa normaletarako eguneratze-arauen bidez lor daiteke. Are 

gehiago, β-rako 𝑁(𝑚β, 𝑠β
2) aldez aurretiko banaketa batetik abiatuta, 𝑁(𝑚′β, (𝑠′β)

2
) ondorengo 

banaketa lortuko dugu, non 

1

(𝑠′β)
2 =

1

𝑠β
2 +

𝑆𝑆𝑥
𝜎2

          (5.7) 
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𝑚′β =

1
𝑠β
2

1

(𝑠′β)
2

∗ 𝑚β +

𝑆𝑆𝑥
𝜎2

1

(𝑠′β)
2

∗  𝐵          (5.8) 

Ondorengo zehaztasuna aldez aurretiko zehaztasunaren eta egiantzaren zehaztasunaren arteko 
baturaren baliokidea da. Ondorengo batezbestekoa aldez aurretiko batezbestekoaren eta 
egiantzaren batezbestekoaren haztapen bat da, ondorengo zehaztasunaren proportzionalak diren 
zehaztasun-pisuekin. Hortaz, ondorengo banaketa ere normala da. αx̅-rako 𝑁(𝑚αx̅ , 𝑠αx̅

2 ) aldez 

aurretiko banaketa batetik abiatuta, 𝑁(𝑚′αx̅ , (𝑠′αx̅)
2
) ondorengo banaketa lortuko dugu, non 

1

(𝑠′αx̅)
2 =

1

𝑠αx̅
2
+
𝑆𝑆𝑥
𝜎2

          (5.9) 

𝑚′αx̅ =

1
𝑠αx̅
2

1

(𝑠′αx̅)
2

∗ 𝑚αx̅ +

𝑛
𝜎2

1

(𝑠′αx̅)
2

∗  𝐴𝑥̅           (5.10) 

5.3.4 Adibidea (jarraipena) 

Aurreko enpresako estatistikariak erabaki du 𝑁(1, (0.3)2) bat erabiltzea β-ren aldez aurretiko gisa, 
eta 𝑁(15, 12) bat αx̅-ren aldez aurretiko gisa. Bariantza erreala ezezaguna denez gero, karratu 
txikienen bidez lortutako estimazioa erabiliko du: 𝜎̂2 = 0.0348644. 

Kontuan hartu behar da  𝑆𝑆𝑥 = ∑ (𝑥𝑖 − 𝑥̅)
2 = 𝑛(𝑥2̅̅ ̅𝑛

𝑖=1 − 𝑥̅2) = 25 ∗ (207.0703 − 14.38882) =

0.81886 dela. Hortaz, β-ren ondorengo zehaztasuna eta bariantza eta ondorengo batezbestekoa 
honako hauek dira: 

1

(𝑠′β)
2 =

1

0.32
+

0.811886

0.0348644
= 34.5981     ⟹    𝑠′β = 0.17001. 

   𝑚′
β =

1
0.32

34.5981
∗ 1 +

0.81886
0.0348644
34.5981

∗ 1.29963 = 1.2034. 

Era berean, αx̅-ren ondorengo balioak lortuko ditugu: 

1

(𝑠′αx̅)
2 =

1

12
+

25

0.0348644
= 718.064     ⟹    𝑠′αx̅ = 0.037318. 

   𝑚′
αx̅ =

1
12

718.064
∗ 15 +

25
0.0348644
718.064

∗ 14.2208 = 14.2219. 

Ondorengo grafikoan, maldaren aldez aurretiko eta ondorengo banaketak ditugu. 
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5.3.4 Maldarako sinesgarritasun-tartea 

β-ren ondorengo banaketak datuak behatu ondoren dugun ezagutza adierazten du. β,-rako 
sinesgarritasun-tarte bayestar bat lortu nahi bada, honela adieraziko da: 

𝑚′𝛽 ± 𝑧𝛼
2
√(𝑠′β)

2
        ( 5.11) 

Hala ere, errealistagoa da pentsatzea ezezaguna izango dela 𝜎2-ren balioa. Hondarretatik abiatuta, 
honako estimazio hau egin daiteke: 

𝜎̂2 =
∑ (𝑦𝑖 − (𝐴𝑥̅ + 𝐵(𝑥𝑖 − 𝑥̅)))

2𝑛
𝑖=1

𝑛 − 2
. 

Ziurgabetasun-maila handiagoa denez gero, tarteak zabalagoa izan behar du. Horretarako, 
estatistiko normalaren balio kritikoaren ordez, Studenten t banaketarena erabiliko dugu, 𝑛 − 2 
askatasun-gradurekin. Hortaz, tarteak honako adierazpen hau izango du: 

𝑚′𝛽 ± 𝑡𝛼
2
√(𝑠′β)

2
        ( 5.12) 

5.3.5 Maldarako aldebakarreko kontrastea 

Askotan, 𝑥-eko unitate bateko gehikuntzari lotutako 𝑦 -ko gehikuntza 𝛽0 balio jakin bat baino 
handiagoa den jakin nahi izaten da. Horretarako, honako hipotesi hauek planteatzen dira: 

𝐻0: 𝛽 ≤ 𝛽0  vs.  𝐻1: 𝛽 > 𝛽0 

Hipotesiak era bayestarrean eta α mailan testatzeko, hipotesi nuluaren ondorengo probabilitatea 
kalkulatzen da: 

0.0 0.5 1.0 1.5 2.0

m

Distribuciones de la pendiente

previa

posterior

Maldaren banaketak 

Aldez aurretikoa 
Ondorengoa 
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𝑃(𝛽 ≤ 𝛽0|𝑑𝑎𝑡𝑎) = ∫ 𝑔(𝛽|𝑑𝑎𝑡𝑎)𝑑𝛽
𝛽0

−∞

= 𝑃 (𝑍 ≤
𝛽0 −𝑚′𝛽

𝑠′β
).       (5.13) 

Probabilitate hori α baino txikiagoa bada, hipotesi nulua baztertu egiten da. Bariantza zenbatetsi 
behar izatekotan, Z normalaren ordez Studenten t banaketa erabili beharko da, 𝑛 − 2 askatasun-
gradurekin. 

5.3.6 Maldarako aldebiko kontrastea 

Baldin eta β = 0 bada, 𝑦-ren batezbestekoa ez dago 𝑥-en mende. Beraz, interesgarria da 𝐻0: 𝛽 = 0 
vs. 𝐻1: 𝛽 ≠ 0 hipotesiak era bayestarrean eta α esangura-mailarekin kontrastatzea aurresateak 
egiteko erregresio-eredua erabili aurretik. Horretarako, 0 balioa sinesgarritasun-tartean ote dagoen 
egiaztatu behar da. Tarte horretan ez badago, hipotesi nulua baztertu egiten da, eta egokia da 
erregresioa eredu aurresale gisa erabiltzea. 

5.4 Etorkizuneko behaketetarako banaketa aurresaleak 

Erregresio linealaren helburu nagusietako bat 𝑦𝑛+1 balioa aurresatea da, 𝑥𝑛+1 aldagai 
azaltzailearen balioa emanik eta mendeko aldagaiaren eta aldagai azaltzailearen artean 
benetako erlazio lineal bat dagoela egiaztatu ondoren. Hortaz, 𝑦𝑛+1-en aurresaterik onena, 
𝑥𝑛+1 emanik, honako hau izango da: 

𝑦̃𝑛+1 = 𝛼̂𝑥̅ + 𝛽̂(𝑥𝑛+1 − 𝑥̅), 

Adierazpen horretan, 𝛽̂ zenbatetsitako malda da, eta 𝛼̂𝑥̅, berriz, 𝑥 = 𝑥̅ zuzenaren 
interzeptuaren estimazioa. 

Aurresatearen egokitasunari dagokionez, bi ziurgabetasun-puntu daude. Lehenik eta behin, 
balio erreal baina ezezagunaren ordez bi balioren estimazioa erabili da aurresatea egiteko. 
Parametroak ausazko aldagaiak direla eta haien ondorengo banaketa aurreko sekzioan lortu 
dela suposatzen da. Gainera, 𝑦𝑛+1 behaketa berriak bere errore propioa dauka, eta aurreko 
erroreekiko independentea izango da. 𝑦𝑛+1-en banaketa aurresalea, 𝑥𝑛+1 eta datuak emanik, 
Bayesen teorema aplikatuta lortzen da, eta honela adierazten da: 𝑓(𝑦𝑛+1|𝑥𝑛+1, 𝑑𝑎𝑡𝑎). 

5.4.1 Banaketa aurresalea 

Banaketa aurresalea honako integral honetatik abiatuta lortzen da: 

𝑓(𝑦𝑛+1|𝑥𝑛+1, 𝑑𝑎𝑡𝑎) = ∬𝑓(𝑦𝑛+1, 𝛼𝑥̅ , 𝛽|𝑥𝑛+1, 𝑑𝑎𝑡𝑎)𝑑𝛼𝑥̅𝑑𝛽. 

 
Lehenik eta behin, parametroen eta hurrengo behaketaren ondorengo baterakoa finkatu 
behar da, 𝑥𝑛+1 balioa eta datuak emanik: 

(𝑦𝑛+1, 𝛼𝑥̅ , 𝛽|𝑥𝑛+1, 𝑑𝑎𝑡𝑎) = 𝑓(𝑦𝑛+1|𝛼𝑥̅, 𝛽, 𝑥𝑛+1, 𝑑𝑎𝑡𝑎) ∗ 𝑔(𝛼𝑥̅ , 𝛽|𝑥𝑛+1, 𝑑𝑎𝑡𝑎).  

Hurrengo 𝑦𝑛+1 behaketa, 𝛼𝑥̅ eta 𝛽 parametroak eta 𝑥𝑛+1-en balioa emanik, erregresio-
ereduarekin lortutako ausazko aldagai berri bat da. 𝛼𝑥̅ eta 𝛽 emanik, behaketa guztiak 
elkarren independenteak dira. Hau da, parametroak emanik, behaketa berria ez dago aldez 
aurretiko aurresateez osatutako datuen mende. Behaketa berriaren eta parametroen baterako 
banaketa honela sinplifikatzen da: 
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𝑓(𝑦𝑛+1, 𝛼𝑥̅ , 𝛽|𝑥𝑛+1, 𝑑𝑎𝑡𝑎) = 𝑓(𝑦𝑛+1|𝛼𝑥̅, 𝛽, 𝑥𝑛+1) ∗ 𝑔(𝛼𝑥̅ , 𝛽|𝑑𝑎𝑡𝑎) 

Hartutako hipotesien arabera, hurrengo behaketa normal bat bezala banatzen da, 𝜇𝑛+1 =
𝛼𝑥̅ + 𝛽(𝑥𝑛+1 − 𝑥̅) batezbestekoarekin eta 𝜎2 bariantza ezagunarekin.  Parametroen 
ondorengo banaketak, aurreko sekzioan ikusitako eguneratze-arauetatik abiatuta lortutako 

aldez aurretiko datuak emanik, 𝑁(𝑚′
𝛼𝑥̅ , (𝑠

′
𝛼𝑥̅)

2
) eta 𝑁(𝑚′

𝛽 , (𝑠
′
𝛽)

2
) dira, independenteak. 

Behaketa berria 𝜇𝑛+1 = 𝛼𝑥̅ + 𝛽(𝑥𝑛+1 − 𝑥̅), funtzio linealaren bitartez soilik dago parametroen 
mende, eta, beraz, arazoa sinplifikatu egin daiteke.  𝛼𝑥̅  eta 𝛽 independenteak direnez gero, 
𝜇𝑛+1-en ondorengo banaketa normala izango da, 𝑚′𝜇 = 𝑚′𝛼𝑥̅ + (𝑥𝑛+1 − 𝑥̅) ∗ 𝑚′𝛽 

batezbestekoarekin eta (𝑠′𝜇)
2
= (𝑠′𝛼𝑥̅)

2
+ (𝑥𝑛+1 − 𝑥̅)

2 ∗ (𝑠′𝛽)
2

 bariantzarekin. 

Banaketa aurresalea lortzeko, 𝜇𝑛+1-en marjinalizazioa erabiliko dugu 𝑦𝑛+1 eta 𝜇𝑛+1-en 
ondorengo baterakoaren bidez. 

𝑓(𝑦𝑛+1|𝑥𝑛+1, 𝑑𝑎𝑡𝑎) = ∫𝑓(𝑦𝑛+1, 𝜇𝑛+1|𝑥𝑛+1, 𝑑𝑎𝑡𝑎)𝑑𝜇𝑛+1 

= ∫𝑓(𝑦𝑛+1|𝜇𝑛+1, 𝑥𝑛+1, 𝑑𝑎𝑡𝑎) ∗ 𝑔(𝜇𝑛+1|𝑥𝑛+1, 𝑑𝑎𝑡𝑎)𝑑𝜇𝑛+1 

= ∫𝑓(𝑦𝑛+1|𝜇𝑛+1) ∗ 𝑔(𝜇𝑛+1|𝑥𝑛+1, 𝑑𝑎𝑡𝑎)𝑑𝜇𝑛+1 

∝ ∫𝑒
−
1
2𝜎2

(𝑦𝑛+1−𝜇𝑛+1)
2

∗ 𝑒
−

1

2(𝑠′𝜇)
2(𝜇𝑛+1−𝑚′𝜇)

2

𝑑𝜇𝑛+1 

∝ ∫𝑒

−
1

2𝜎2(𝑠′𝜇)
2

𝜎2+(𝑠′𝜇)
2

(𝜇𝑛+1−
𝑦𝑛+1(𝑠

′
𝜇)
2
+𝑚′

𝜇𝜎
2

𝜎2+(𝑠′𝜇)
2 )

2

∗ 𝑒
−

1

2((𝑠′𝜇)
2
+𝜎2)

(𝑦𝑛+1−𝑚
′
𝜇)
2

𝑑𝜇𝑛+1 

Bigarren faktorea ez dago 𝜇𝑛+1-en mende, eta, lehenengoaren integrala sinplifikatuz gero, 

𝑓(𝑦𝑛+1|𝑥𝑛+1, 𝑑𝑎𝑡𝑎) ∝ 𝑒
−

1

2((𝑠′𝜇)
2
+𝜎2)

(𝑦𝑛+1−𝑚
′
𝜇)
2

. 

Hortaz, 𝑁(𝑚′
𝑦, (𝑠

′
𝑦)
2
) bat dugu, non 𝑚′

𝑦 = 𝑚
′
𝜇 eta (𝑠′𝑦)

2
= ((𝑠′𝜇)

2
+ 𝜎2) den. 

5.4.2 Aurresateko sinesgarritasun-tarteak 

Interesgarria izaten da 𝑦𝑛+1 balioa edukitzeko 1 − 𝛼-ko ondorengo probabilitatea duen tarte 

bat bilatzea, 𝑥𝑛+1 balioan behatuta. Aurresatearen 𝑚′
𝑦 batezbestekotik eta (𝑠′𝑦)

2
 

bariantzatik abiatuta, sinesgarritasun-tartea honela lortzen da: 

𝑚′
𝑦 ± 𝑧𝛼

2
∗ 𝑠′𝑦 = 𝑚

′
𝜇 ± 𝑧𝛼

2
∗ √(𝑠′𝜇)

2
+ 𝜎2 

= 𝑚′𝛼𝑥̅ + (𝑥𝑛+1 − 𝑥̅) ∗ 𝑚
′
𝛽 ± 𝑧𝛼

2
∗ √(𝑠′𝛼𝑥̅)

2
+ (𝑥𝑛+1 − 𝑥̅)

2 ∗ (𝑠′𝛽)
2
+ 𝜎2, 

behaketaren 𝜎2 bariantza ezaguna denean. Bariantza ezezaguna delako zenbatetsi behar bada, 
berriz, 
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𝑚′
𝑦 ± 𝑡𝛼

2
∗ 𝑠′𝑦 = 𝑡

′
𝜇 ± 𝑧𝛼

2
∗ √(𝑠′𝜇)

2
+ 𝜎2 

= 𝑚′𝛼𝑥̅ + (𝑥𝑛+1 − 𝑥̅) ∗ 𝑚
′
𝛽 ± 𝑡𝛼

2
∗ √(𝑠′𝛼𝑥̅)

2
+ (𝑥𝑛+1 − 𝑥̅)

2 ∗ (𝑠′𝛽)
2
+ 𝜎2, 

non balio kritikoa Studenten t banaketaren bidez lortzen den, 𝑛 − 2 askatasun-gradurekin. 
Kasu horretan, tarte bayestarrak eta frekuentistak berdinak dira. 

5.4.3 Adibidea (jarraipena) 

Bitarteko mailaren (x) araberako amaierako hezetasun-mailaren (y) banaketa aurresalea 
kalkulatzen da. Banaketa aurresalearen batezbestekoa eta bariantza honako hauek dira: 

𝑚′
𝑦 = 14.2219 + 1.2034(𝑥 − 14.3888), 

(𝑠′𝑦)
2
= 0.0348644 + 0.0373182 + 0.170012 ∗ (𝑥 − 14.3888)2.  

Hortaz, 95%eko sinesgarritasun-tartea (𝑚′
𝑦 − 𝑡0.025 ∗ 𝑠

′
𝑦,𝑚

′
𝑦 + 𝑡0.025 ∗ 𝑠

′
𝑦) da. Ondorengo 

grafikoan, batezbestekoa eta % 95eko tarte bayestarra daude irudikatuta. 

 

 

 

 

 

 
 
 

  Batezbesteko aurresalea, beheko eta goiko mugekin 

Goiko muga %95ean 
Beheko muga %95ean 
Batezbestekoa 
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6.  Simulazio bidezko adibideak 

Kapitulu honetan, ausazko lagin estratifikatu batean aplikatuko dugu landutako teoria, eta, 
ondoren, lortutako emaitzak aztertuko ditugu. Lehenik eta behin, batezbesteko normal baten 
estimazio estratifikatuarekin lan egingo dugu, eta, ondoren, proportzio baten estimazio 
estratifikatuarekin. Bi adibideetan, egiantzeko hainbat egoera adieraziko dituzten datu 
simulatuekin lan egingo dugu. 

 

6.1 Adibidea batezbesteko normal batekin 

Demagun N tamainako populazio batetik hartutako n tamainako ausazko lagin bat dugula eta 
ezaugarri jakin baten balioa neurtu nahi dugula. Laginaren behaketak bi estratutan banatuta 
daude, eta estratu bakoitza 𝐳 = (z1, z2) bektore dikotomikoaren bidez adierazten da, non 
z𝑗 = 1ek adierazten duen behaketa j estratukoa dela, j  {1,2}. izanik. Kasu horretan, alde 

batetik n1 = 250 eta n2 = 150 (n = 400) dugu, eta, bestetik, N1 = 5000 eta N2 = 3000 
(N = 8000). Helburua estratu bakoitzeko Y aldagaiaren a posteriori batezbestekoa eta 
aldagaiaren guztizko batezbestekoa aurkitzea izango da. 

Demagun, halaber, aurreko azterlanei erreparatuz badakigula Y aldagaia normal banatuta 
dagoela estratu bakoitzean, eta estratu bakoitzaren batezbestekoak lehen estratuan 30eko 
batezbestekoa eta 0.5eko bariantza, eta bigarrenean 300eko batezbestekoa eta 10eko 
bariantza dituen normal bati jarraitzen diola. Y-ren bariantzari buruzko informaziorik ez dugu.   

Hortaz, 𝒛 = (1,0) betetzen duten behaketei (lehen estratukoei) dagokienez, pentsa dezakegu 

Y1~N(mu, tau) dela (non tau bariantzaren alderantzizkoa den) eta, era berean, mu~N(30,
1

0.5
) 

dela. Aldez aurretiko bariantzari buruzko a priori informaziorik ez dugunez gero, 
informaziozkoa ez den aldez aurretiko bat esleituko diogu tau-ri: adibidez, 
tau~Ga(0.001,0.001). Aldez aurretikoari indar handiagoa eman nahi badiogu, bariantza 

txikiagotu dezakegu. Adibidez, pentsa liteke mu~N(30,
1

0.02
) dela. 

6. Kapitulua 
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Aldez aurretiko banaketa finkatu ondoren, behatutako datuek ematen diguten informazioa 
ikusi beharko litzateke. Adibide honetarako, lehen estratuko 250 behaketak simulatu ditugu –

N(27,
1

5
) banaketa bati jarraitzen diotela suposatuta–, eta 27.05eko lagin-batezbestekoa lortu 

dugu, 4.63ko bariantzarekin. 

Hirugarren eta azken urratsa a posteriori banaketa lortzea izango da. Eskura ditugun datuekin 
eguneratze-araurik erabili ezin denez gero, ondorengo banaketa simulatuko dugu MCMC 
metodoen bidez. Horretarako, WinBUGS programa erabiliko dugu, R-tik deituta. Erabilitako 
kodea I. Eranskinean agertzen da. 

Ondorengo grafikoetan, proposatutako bi aldez aurretikoetarako lortutako banaketak ditugu: 

 

Estimazio puntual gisa, a posteriori batezbestekoa erabiliko dugu:  𝑦1.1 = 27.16  eta 
𝑦1.2 = 28.86. Lehen kasuan, a posteriori batezbestekoa laginaren batezbestekotik oso hurbil 
dago. Horrek esan nahi du aldez aurretikoak ia ez duela garrantzirik eta 250 behaketaren 
informazioarekin osatutako egiantzak baino askoz pisu txikiagoa duela. Bigarren kasuan, a 
posteriori batezbestekoa laginaren batezbestekoaren eta a priori batezbestekoaren erdialdean 
dago. Informazio handiagoko aldez aurretiko bat ezarri denez gero, pisu handiagoa ematen 
zaio, eta egiantzaren bidez lortutako informazioa bezain garrantzitsua da. 

Demagun orain laginaren tamaina 250 behaketatik 25era murrizten dugula eta datuak N(27,
1

5
) 

banaketa bera erabiliz simulatzen ditugula; laginaren batezbestekoa 27.38 izango da, eta bariantza, 
berriz, 4.51. 

Arestian mu, mu~N(30,
1

0.5
) eta mu~N(30,

1

0.02
)-rako proposatutako bi aldez aurretikoak 

erabiltzen baditugu, honako grafiko hauek lortuko ditugu: 

 

 
 

y1-en banaketak, informaziozko aldez aurretiko 
batekin eta n=250 izanik 

 

y1-en banaketak, informazio handiagoko aldez 
aurretiko batekin eta n=250 izanik 

 

Aldez aurretikoa 

Egiantza 

Ondorengoa 

Aldez aurretikoa 

Egiantza 

Ondorengoa 
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Kasu horretan, a posteriori banaketak zein a posteriori batezbestekoaren estimazio puntualak 
(𝑦1.1 = 28.15 eta 𝑦1.2 = 29.88,) laginaren tamaina handiagoa zenean lortutakoenen desberdin 
samarrak dira. Aldez aurretiko lehenarekin, aldez aurretiko batezbestekoaren eta laginaren 
batezbestekoaren artean dagoen estimazio bat lortzen da. Horrek esan nahi du aukeratutako aldez 
aurretikoak eta egiantzak antzeko garrantzia dutela eta, laginaren tamaina murriztu izanaren 
ondorioz, aldez aurretiko ezagutza erabiltzen dela emaitza eguneratuak lortzeko. Bigarren kasuan, 
balio berean zentratuta dagoen, baina bariantza txikiagoa duen aldez aurretiko bat erabiltzen da. A 
posteriori batezbestekoaren estimazioa a priori batezbestekotik oso hurbil dago; izan ere, lagin-datu 
gutxi (n=25) daudenez eta aldez aurretikoa oso sendoa denez gero, egiantza ez da kontuan hartzen, 
eta ia aldez aurretiko banaketaren informazioa baino ez da erabiltzen estimazioa egiteko. 

Bestalde, afldez aurretiko lau bat erabiliko bagenu (mu~N(0,
1

1000
), adibidez), indar guztia 

egiantzari emango genioke, aldez aurretiko ezagutzarik gabe informazio-iturri bakarra behatutako 

datuak izango bailirateke. Laginaren tamaina 250 zenean, mu~N(30,
1

0.5
) aldez aurretikoak aldez 

aurretiko lau batek bezala jokatzen zuen ia, datu kopuru handia erabiltzen zenez gero aldez 
aurretikoak ez baitzuen garrantzirik. Grafikoan ikus dezakegunez, a posteriori banaketa eta egiantza 
balio berean zentratuta daude ia, eta a posteriori batezbestekoaren estimazio puntuala 𝑦1.3 =
27.33 da.  

 

y1-en banaketa, informaziozko aldez aurretiko 
batekin eta n=25 izanik 

 

y1-en banaketa, informazio handiagoko aldez 

aurretiko batekin eta n=25 izanik 
 

 

Aldez aurretikoa 

Egiantza 

Ondorengoa 

Aldez aurretikoa 

Egiantza 

Ondorengoa 

Aldez aurretikoa 

Egiantza 

Ondorengoa 

y1-en banaketa, aldez aurretiko lau batekin eta 
n=25 izanik 

 



 

 SIMULAZIO BIDEZKO ADIBIDEAK     60 

 

𝒛 = (0,1) denean (bigarren estratua), esan dezakegu 𝑌~𝑁(𝑚𝑢, 𝑡𝑎𝑢) eta 𝑚𝑢~𝑁(310,
1

10
) 

direla. Aldez aurretiko bariantzari buruzko a priori informaziorik ez dugunez gero, 
informaziozkoa ez den aldez aurretiko bat esleituko diogu tau-ri: adibidez, 
𝑡𝑎𝑢~𝐺𝑎(0.001,0.001). Aldez aurretikoari indar handiagoa eman nahi badiogu, bariantza 

txikiagotu dezakegu. Adibidez, pentsa liteke mu~N(310,
1

0.5
) dela. 

Hurrengo urratsa behatutako datuek ematen diguten informazioa ikustea da. Adibide 

honetarako, lehen estratuan ditugun 150 behaketak simulatu ditugu, N(300,
1

40
) banaketari 

jarraitzen diotela suposatuta, eta 300.14 lagin-batezbestekoa lortu dugu, 32.70 bariantzarekin. 

Hirugarren eta azken urratsa a posteriori banaketa lortzea izango da. Berriz ere WinBUGS 
programa erabiliko dugu, R-tik deituta. Hurrengo grafikoetan, proposatutako bi aldez 
aurretikoetarako lortutako banaketak agertzen dira: 

 

Estimazio puntual gisa, a posteriori batezbestekoa erabiliko dugu:  𝜇2.1 = 300.37  eta 
𝜇2.2 = 303.99. Arestian aipatu dugun efektu bera gertatzen da, hau da, datu ugarirekin 
behatzean egiantzak pisu handia duela. Laginaren datuei indarra kentzeko, informazio handiko 
aldez aurretiko bat beharko litzateke. Era horretan, aldez aurretiko lehenak aldez aurretiko lau 
batek bezala jokatzen du ia, eta bigarrenak egiantzaren antzeko garrantzia dauka.  

Behatutako datuen lagin-tamainaren eragina hobeto ikusteko, demagun orain laginaren tamaina 

150 behaketatik 15era murrizten dugula eta datuak N(300,
1

40
) banaketa bera erabiliz simulatzen 

ditugula. Kasu horretan, laginaren batezbestekoa 300.64 izango da, eta bariantza, berriz, 41.42. 

Arestian mu, mu~N(310,
1

10
) eta mu~N(310,

1

0.5
)-rako proposatutako aldez aurretiko biak 

erabiltzen baditugu, honako grafiko hauek lortuko ditugu: 
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Berriz ere, a posteriori banaketak eta a posteriori batezbestekoaren estimazio puntualak 
(𝑦2.1 = 303.04 eta 𝑦2.2 = 309.44) laginaren tamaina handiagoa zenean lortutakoenen desberdin 
samarrak dira. Aldez aurretiko lehenarekin, aldez aurretiko batezbestekoaren eta laginaren 
batezbestekoaren artean dagoen estimazio bat lortzen da. Hau da, kasu horretan, aldez aurretikoak 
eragina du amaierako a posteriori banaketan. Bigarren kasuan, balio berean zentratuta dagoen, 
baina bariantza txikiagoa duen aldez aurretiko bat erabiltzen da. Aldez aurretiko eta ondorengo 
banaketak zertxobait desberdinak dira, ditugun datu urriek (n=15) informazio gutxi ematen baitute. 

Azkenik, aldez aurretiko lau bat erabiliko bagenu (mu~N(0,
1

1000
), adibidez), indar guztia egiantzari 

emango genioke, aldez aurretiko ezagutzarik gabe informazio-iturri bakarra behatutako datuak 

izango bailirateke (gutxi izanik ere). Laginaren tamaina 150 zenean, mu~N(310,
1

10
) aldez 

aurretikoak aldez aurretiko lau batek bezala jokatzen zuen ia, datu kopuru handia erabiltzen zenez 
gero aldez aurretikoak ez baitzuen garrantzirik. Grafikoan ikus dezakegunez, a posteriori banaketa 
eta egiantza balio berean zentratuta daude ia, eta a posteriori batezbestekoaren estimazio puntuala 
𝑦2.3 = 300.63 da. 

 

 

Aldez aurretikoa 

Egiantza 

Ondorengoa 

Aldez aurretikoa 

Egiantza 

Ondorengoa 

y2-ren banaketak, informaziozko aldez aurretiko 
batekin eta n=15 izanik 

 

y2-en banaketa, informazio handiagoko aldez 
aurretiko batekin eta n=15 izanik 

 

Aldez aurretikoa 

Egiantza 

Ondorengoa 

y2-ren banaketa, aldez aurretiko lau batekin eta 
n=15 izanik 
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Estratu bakoitzerako emaitzak lortu ondoren, guztizko a posteriori batezbestekoa lortzea izango da 
helburua. Horretarako, batezbesteko haztatu bat erabiliko da. Lehen eta bigarren estratuen 
populazio-tamainak 5.000 eta 8.000 unitate dira hurrenez hurren. Horrela, beraz, taulan agertzen 
diren datuak lortuko dira. 

  𝒚̂
𝟏
 𝒚̂

𝟐
 𝒚̂ 

n1= 250  

n2= 150 

Informazio 

gutxiko 

aldez 

aurretikoa 

27.16 300.15 

5000 ∗ 27.16 + 3000 ∗ 300.15

8000
= 129.53 

Informazio 

handiko 

aldez 

aurretikoa 

28.86 303.99 

5000 ∗ 28.86 + 3000 ∗ 303.99

8000
= 132.03 

n1= 25  

n2= 15 

Informazio 

gutxiko 

aldez 

aurretikoa 

28.15 303.04 

5000 ∗ 28.15 + 3000 ∗ 303.04

8000
= 131.23 

Informazio 

handiko 

aldez 

aurretikoa 

29.88 309.44 

5000 ∗ 29.88 + 3000 ∗ 309.44

8000
= 134.72 

Aldez 

aurretiko 

laua 

27.36 300.63 

5000 ∗ 27.36 + 3000 ∗ 300.63

8000
= 129.84 

Adibide horiekin, agerian geratzen da aldez aurretiko ezagutza askoz garrantzitsuagoa dela laginaren 
tamaina txikia denean eta informazio gehigarriarekin osatu behar denean. Normalean, aldez 
aurretiko informazioarekin erabat konbentzituta gaudenean izan ezik, ez da komeni bariantza 
gehiegi murriztea, horrek eragin negatiboa izan baitezake emaitzetan. 

6.2 Adibidea proportzio batekin 

Demagun Nj, j ∈ {1,2} tamainako populazio batetik hartutako nj tamainako ausazko beste bi 

lagin ditugula. Aurreko kasuan bezala, i behaketa bakoitzari dagokion estratua 𝐳 = (z1, z2) 
bektore dikotomikoaren bidez adierazten da, non z𝑗 = 1ek adierazten duen behaketa hori j 
estratukoa dela. Azkenik, ezaugarri jakin baten presentzia neurtzen da, non 

yi = {
1 presencia de la variable y en la observación i 
0 ausencia de la variable y en la observación i 

 

Gure kasuan, alde batetik n1 = 50 eta n2 = 30 (n = 80) dira, eta, bestetik, N1 = 500 
eta N2 = 300 (N = 800). Helburua y ezaugarria estratu bakoitzean zer proportziotan dagoen 
eta guztizkoan zer proportziotan dagoen jakitea da. 

Estatistika bayestarraren zailtasunetako bat aldez aurretiko ezagutza probabilitate-
banaketa baten bidez adieraztea da. Izan ere, era askotara egin daiteke, eta aukera asko eta 
asko daude. 2. kapituluan ikusi dugunez, proportzioekin lan egiten denean komeni da beta 
familiako banaketa bat erabiltzea. Beta banaketa banaketa konjugatua da, hau da, ondorengo 
banaketak beta banaketa bat izaten jarraitzen du, eta eguneratze-sistema sinplea da. 
Horrelako banaketa bat a eta b parametroek osatzen dute, eta, ikusi dugunez: 
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{
 
 

 
 π0 =

a

a + b

σ0 = √
π0(1 − π0)

(a + b + 1)
  
   .                    

Bestalde, komeni da, halaber, aldez aurretikoaren lagin-tamaina baliokidea kalkulatzea. 

Binomial(n, π) baten π̂ =
y

n
 proportzioak honako bariantza hau du: 

π(1−π)

n
. Bariantza hori 

aldez aurretiko bariantzarekin berdinduz (a priori batezbestekoaren bidez): 

π0 (1 − π0)

neq
=

ab

(a + b)2(a + b + 1)
 . 

a

a+b
= π0 eta 

b

a+b
= 1 − π0 denez gero, lagin-tamaina baliokidea neq = a + b + 1 da. Hau da, 

aukeratu dugun banaketak ematen duen informazio kantitatea tamaina horretako ausazko 
lagin baten baliokidea da.  

Aurretik egindako azterlan batzuetatik, badugu informazioren bat y-k estratu bakoitzean duen 
presentziaren inguruan. Demagun 𝒛 = (1,0) betetzen duten behaketen kasuan (1. estratua) 
badakigula 50 indibiduoko lagin-tamaina batean oinarrituta arrakastaren proportzioa 0.3 dela. 
Era horretan, Beta(14.7, 34.3) aldez aurretiko bat lortuko genuke. Proportzioak 0.2 eta 0.4 
balioen artean % 95eko konfiantza estatistikoa badu, berriz, beharrezkoak diren ekuazioak 
bakandu ondoren Beta(24.9,58.1) bat izango dugu, 84 behaketaren baliokidea den lagin-
tamaina batekin. Azkenik, p-ren balioari buruzko aldez aurretiko informaziorik ez bagenu, 
Beta(1,1) banaketa bat erabil genezake, banaketa Uniforme[0,1] baten baliokidea; horrek 
esan nahiko luke  p-ren balio guztiak probabilitate berekoak direla. 

Aldez aurretiko banaketa finkatu ondoren, behatutako datuek ematen diguten informazioa 
ikusi beharko litzateke. Adibide honetarako, lehen estratuko n1 = 50 behaketak simulatu 
ditugu banaketa Binomial(0.25,50) bat erabiliz, eta aldagaiaren 10 presentzia eta 40 
absentzia lortu ditugu. Hortaz, behatutako probabilitatea p=0,2 da.  

Hirugarren eta azken urratsa a posteriori banaketa lortzea izango da. Aurreko kapituluetan 
adierazi dugunez, beta banaketa konjugatua da, eta formula sinple baten bidez lortzen da a 
posteriori banaketa (beta banaketa hura ere). Aldez aurretiko banaketa Beta(a,b) bat bada eta 
behatutako datuen arabera y=10 eta n=50 bada, a posteriori Beta(a’,b’) banaketa bat 
lortuko da, non a’=a+10 eta b’=b+50-10 den. 

Ondorengo grafikoetan, aukeratutako aldez aurretikoaren arabera lortutako banaketak ditugu. 
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Estimazio puntual gisa, a posteriori batezbestekoa erabiliko dugu: 

p1.1=0.2495 p1.2=0.2624 p1.3=0.2115 

Lehen bi behaketen artean ez dago hain alde handirik, bi kasuetan antzeko a priori bat 
baitzegoen. Aldez aurretiko horrek adierazten zuen p-ren balioa 0.3tik hurbil zegoela; 
egiantzak, aldiz, 0.2tik hurbil zegoela adierazten zigun. Azkenik, bi informazio-iturriak kontuan 
hartzean, bitarteko balio bat lortzen da. Hala ere, lehen kasuan balioa txikixeagoa da, aldez 
aurretikoak behaketa kopuru txikiagoa baitzuen. Hirugarren kasuan, berriz, aldez aurretiko 
ezagutzarik ez genuenez gero, a posteriori batezbestekoa datuetan behatutakoaren oso 
antzekoa da. 

Bigarrenik, demagun 𝒛 = (0,1) betetzen duten behaketei (2. estratua) buruzko aldez aurretiko 
informazioa ere badugula. Jakin dezakegu 35 behaketako lagin-tamaina batean oinarrituta 
proportzioak 0.2 batezbestekoa duela, edota probabilitateak % 95eko konfiantza estatistikoa 
duela 0.1 eta 0.3 balioen artean. Azkenik, aldez aurretiko informaziorik gabeko kasua dugu. 
Arestian adierazitako formulak erabiliz, Beta(6.8, 27.2) bat lortzen da lehen kasurako, 
Beta(12.6, 50.4) bat (63ren tamaina baliokidea) bigarren kasurako, eta aldez aurretiko 
Beta(1,1) laua hirugarren kasurako. 

Aldez aurretiko ezagutza: p=0.3 n=50 Aldez aurretiko ezagutza: IC%95=(0.2,0.4) 

Aldez aurretikoa 

Egiantza 

Ondorengoa 

Aldez aurretikoa 

Egiantza 

Ondorengoa 

Aldez aurretikoa 

Egiantza 

Ondorengoa 

Aldez aurretiko ezagutzarik gabe 
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Behatutako datuak simulatu ditugu, eta 30 behaketatik 3k dute ezaugarria; hau da, p=0.1. 
Ondoren, eguneratze-formulak erabiliz, irudian ikus ditzakegun a posteriori banaketak 
kalkulatu ditugu. 

 

 

Estimazio puntual gisa, a posteriori batezbestekoa erabiliko dugu: 

p2.1=0.1531 p2.2=0.1677 p2.3=0.125 

Aurreko kasuan bezala, lehen bi a posteriori proportzioak elkarren antzekoak dira, sartutako 
aldez aurretiko informazioa balio berean zentratuta baitzegoen. Hala ere, ikus daitekeenez, 
bigarrenak indar handiagoa zuen. Bi balioak aldez aurretiko informazioaren eta 
behatutakoaren artean daude. Hirugarren kasuan, aldez aurretiko informazio asko ez 
dagoenez gero, a posteriori proportzioak egiantzaren antzeko balio bat hartu du. 
Azkenik, ondorengo taulan ikus daitekeenez, laginketa estratifikatu sinple batekin lan egitean 
beharrezkoa da lortutako estimazioak haztatzea, proportzioaren estimazio globala lortzeko. 

 

Aldez aurretikoa 

Egiantza 

Ondorengoa 

Aldez aurretikoa 

Egiantza 

Ondorengoa 

Aldez aurretikoa 

Egiantza 

Ondorengoa 

Aldez aurretiko ezagutza: p=0.2 n=35 Aldez aurretiko ezagutza: IC%95=(0.1,0.3) 

Aldez aurretiko ezagutzarik gabe 
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 𝒑̂
𝟏
 𝒑̂

𝟐
 𝒑̂ 

Informaziozko aldez aurretikoa, 

aldez aurretiko ezagutza 

urriarekin 

0.2495 0.1531 

500 ∗ 0.2495 + 300 ∗ 0.1531

800
= 0.2134 

Informazio handiko aldez 

aurretikoa, aldez aurretiko 

ezagutza handi samarrarekin 

0.2624 0.1677 

500 ∗ 0.2624 + 300 ∗ 0.1677

800
= 0.2269 

Aldez aurretiko laua, aldez 

aurretiko ezagutzarik gabe 
0.2115 0.125 

500 ∗ 0.2115 + 300 ∗ 0.125

800
= 0.1791 

Emaitza globaletan gehiegizko alderik ez badago ere, garbi dago aldez aurretikoaren 
aukeraketa garrantzitsua dela eta emaitzetan aldaketak eragin ditzakeela. 

6.3 Emaitzak 

Deskribatutako adibideetan ikusi dugunez, ondorio intuitiboak eta naturalak lortzeko eta aldez 
aurretiko ikuspuntuak edo usteak gaineratzeko aukera ematen dute metodo bayestarrek. 

Bayesen teoremak gure aldez aurretiko usteak datuek ematen duten informazioarekin 
eguneratzeko aukera ematen digu. Horregatik, datuak aztertu aurretik garrantzitsua da aldez 
aurretiko ezagutzak behar bezala adierazten jakitea. Komeni da aukeratutako banaketa 
marraztea, balioak arrazoizkoak direla eta gure ezagutzarekin bat datozela egiaztatzeko. Bat ez 
badatoz, parametroak alda daitezke kurbak nahi dugun forma eduki arte. 

Lan egiteko erabiltzen ditugun datuen bolumena zenbat eta handiagoa izan, orduan eta 
txikiagoa izango da aldez aurretiko banaketaren eragina. Horrela, beraz, aldez aurretiko 
banaketa desberdin samar batzuetatik abiatuta ere, oso antzekoak diren a priori banaketak 
lortu ahal izango ditugu. Ondorio gisa, esan dezakegu inferentzia bayestarrak askoz indar 
handiagoa duela lagin-tamaina txikiak ditugunean. Izan ere, kasu horietan izaten da 
beharrezkoa informazio gehigarria, gerta baitaiteke eskuragarri dagoen informazioa urria 
izatea eta adierazgarria ez izatea.  
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7.  Merkataritza elektronikoaren inguruko eredu frekuentista bat vs. 
eredu bayestar bat, EUSTATek egindako Informazioaren Gizarteari 
buruzko Inkesta – Enpresak (IGIE) izenekotik abiatuta 

7.1 Testuingurua 

Informazioaren Gizarteari buruzko Inkesta – Enpresak (IGIE) 2001ean jarri zuen abian EUSTATek, 
teknologia berriek EAEko ekonomia-sarean zenbateraino sartu diren zehazteko eta horren inguruko 
jarraipena egiteko, teknologia-alorrak hartzen ari diren iraultza-izaera dela-eta. Harrez geroztik, 
urtero egin izan da inkesta. 

Laginaren estratuak jarduera ekonomikoaren, enplegu kopuruaren eta Lurralde Historikoaren 
arabera zehaztu ziren. Hasiera batean, sei enplegu-estratu zituen inkestak: 0-5, 6-9, 10-19, 20-49, 
50-99 eta 100 enplegu edo gehiago, eta jarduera ekonomikoak 65 kodetan banatuta zeuden, 
Ekonomia Jardueren Sailkapen Nazionalaren (EJSN) arabera. Geroago, berriz, jarduera ekonomikoak 
27 kategoriatan (2009ko EJSNko A38 sailkapenaren arabera) eta enpleguak 3 estratutan (10 enplegu 
baino gutxiago, 10-99 enplegu eta 100 enplegu baino gehiago) banatzea erabaki zen. 

Beren jarduera EAEn egiten duten edozein tamainatako eta edozein jarduera-sektoretako (lehen 
sektorea eta etxeko zerbitzua salbuetsita) establezimenduen multzoa da IGIEko erreferentziazko 
populazioa. Inkesta egin duen populazioa EUSTATen EAEko Jarduera Ekonomikoen Direktoriotik 
hartu da. Direktorio hori inkesta gehigarri garrantzitsuak egiteko ere erabiltzen da, eta jarduera 
ekonomiko, Lurralde Historiko, enplegu kopuru eta eskualde bakoitzaren barruan dauden 
establezimenduen kopuruari buruzko informazioa biltzen du. Saltokien kopurua era irregularrean 
banatuta dago hiru Lurralde Historikoetako hogei eskualdeetan. Inkesta, nolanahi ere, Lurralde 
Historikoaren, enplegu kopuruaren eta jarduera ekonomikoaren inguruko zuzeneko zenbatesleak 
emateko diseinatu zen.  

 Kapitulu honetan proposatutako aplikaziorako, Gipuzkoan merkataritza elektronikoan 
diharduten establezimenduen proportzioaren inguruko estimazioetan murgilduko gara. 
IGIEaren barruan, Gipuzkoako lagina 2.500 establezimendu inguruko panel bat da, % 15-20ko 
urteko berriztapen-tasarekin. Lehenik eta behin, era bayestarrean zenbatetsitako eredu bat 
erabiltzea proposatuko dugu merkataritza elektronikoan diharduten establezimenduen 
proportzioa Lurralde Historikoaren eta jarduera ekonomikoaren arabera finkatzeko. Ondoren, 
emaitza horiek zuzeneko zenbatesle tradizionalen bidez lortutako emaitzekin konparatuko 
ditugu.  

7.2 Datuak 

Gipuzkoaren kasuan eskuragarri ditugun t=2015eko datuak H=169 estratutan eta K=27 
jarduera ekonomiko agregatutan egituratuta daude, non  

7. Kapitulua 
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 𝒚𝒉𝒌 -k adierazten duen merkataritza elektronikoan diharduten h estratuko eta k 
jarduera ekonomikoko establezimenduen kopurua. 

 𝒏𝒉𝒌 -k adierazten duen h estratuan eta k jarduera ekonomikoan dauden lagineko 
establezimenduen kopurua. 

 𝑵𝒉𝒌 -k adierazten duen h estratuan eta k jarduera ekonomikoan dauden lagineko 
establezimenduen kopurua. 

 𝒘𝒉𝒌 -k adierazten duen h estratuko eta k jarduera ekonomikoko unitate bakoitzaren 
pisua. 

Halaber, aurreko urteetako informazioa dugu (t-1, t-2, ...), era berean egituratuta. 

7.3 Metodologia 

Gipuzkoan jarduera ekonomiko bakoitzean (k) merkataritza elektronikoan diharduten 
saltokien proportzioaren estimazioak kalkulatzeko, zuzeneko zenbatesle bat erabiltzen da 
(zehazki, Horvitz-Thompsonen zenbateslea). 

Gipuzkoako proportzio globala zenbatesteko, honako formula hau erabiliko dugu:  

 p̂ =
∑ yhwhh

∑ whh
=
1

N
∑Nhp̂h
h

            (7.1). 

Eta k jarduera ekonomiko bakoitzari dagokion proportzioaren kasuan, berriz,  
 

 p̂k =
∑ yhwhh

∑ whh
|
𝑘

=
1

N
∑Nhp̂h
h

|

𝑘

,    ∀ k ∈ A38          (7.2). 

Non 𝑁 = ∑ Nhh . 
 
Arazoa orain estratu bakoitzean merkataritza elektronikoan diharduten saltokien 
proportzioaren estimazioak kalkulatzen data. Hau da, 169 estratu bakoitzarentzat, bere p̂h 
aurkitu behar da. Emaitzak konparatu ahal izateko, probabilitate hauek estatistika 
frekuentistarekin eta estatistika bayesiarrarekin kalkulatuko ditugu. 

7.3.1 Estatistika frekuentista 

Estrato bakoitzarentzat, estrato bakoitzean merkataritza elektronikoan diharduten saltokien 
proportzioa estimatzeko, zatiketa egingo da merkataritza elektronikoan diharduten saltoki eta 
saltoki guztien kopuruaren artean: 

 p̂h =
yh
nh
. 

Ondoren, (7.1) eta (7.2) erabiliz, merkataritza elektronikoan diharduten saltokien 
proportzioaren estimazioak kalkulatuko dira Gipuzkoa eta jarduera ekonomiko bakoitzerako. 

Azkenik, %95ko konfiantza tarteak lortzeko hurrengo formulak erabiliko dira: 

ICp̂
95% = p̂ ± 1.96 √∑(

Nh
N
)
2

(1 −
nh
Nh
)
p̂hk(1 − p̂hk)

nhk − 1
h
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ICp̂k
95% = p̂k ± 1.96 √∑(

Nh
Nk
)
2

(1 −
nh
Nh
)
p̂h(1 − p̂h)

nh − 1
h

, ∀ k ∈ A38.  

Non N = ∑ Nhh . 

7.3.2 Estatistika bayesiarra 

Arestian adierazi dugunez, inferentzia bayestarrak zenbatesleak optimizatzeko aukera 
ematen du, gure ezagutza eguneratzeko modu bat eskaintzen baitu (behatutako datuak eta 
aurreko inkestetatik hartutako aldez aurretiko informazio bat, informazio osagarri bat edota 
adituen iritzia konbinatzea, alegia). Kasu honetan, aurreko urteko IGIEko aldez aurretiko 
informazioa duen eredu bat erabiliko dugu. 

2. kapituluan azaldutako metodologian oinarrituta, estratu bakoitzeko t. urteko erantzun-
aldagaiak banaketa Binomial bati jarraitzen dio, n eta p parametroekin. Era berean, p 
parametro bakoitzak a eta b parametroak dituen beta banaketa bati jarraitzen dio: 

yh
t~Bin(nh

t, ph
t) 

ph
t~Beta(ah, bh) 

Estratu bakoitzeko Beta banaketaren ah eta bh  parametroak kalkulatzeko, honako ekuazio-
sistema hau ebatzi beharko dugu: 

{
p̂h

t−1 =
ah

(ah + bh)

Trunc (φh(t,t−1) ∗ nh
t−1) = ah + bh + 1

 

Non, 

 𝒚𝒉
𝒕  t. urtean merkataritza elektronikoan jardun duten saltokien kopurua den. 

 𝒏𝒉
𝒕  h estratuak t. urtean duen lagin-tamaina den. 

 𝒑̂𝒉
𝒕  t. urtean h estratu bakoitzean merkataritza elektronikoan aritzeko zenbatetsitako 

aldez aurretiko probabilitatea den. 

 𝑻𝒓𝒖𝒏𝒄(. )  zati osoa itzultzen digun funtzioa den. 

 𝝋𝒉(𝒕,𝒕−𝟏)  φ koefizientea edo Mathewsen korrelazio-koefizientea den. Koefiziente hori 

bi aldagai bitarren arteko elkarketaren neurri bat da. Kasu honetan, t-tik t-1era 
bitarteko eta h estratu bakoitzaren barruko y erantzun-aldagaiaren elkarketa neurtzen 
du. Horrela, beraz, korrelazioa zenbat eta handiagoa izan, orduan eta garrantzi 
handiagoa emango zaio t-1. urteko aldez aurretiko informazioari. 

h estratu jakin baterako φ koefizientea lortu ezin izan bada, erabili beharreko aldez 
aurretikoaren tamaina baliokidea 3 unitate izango da. Gainera, estratu jakin bati buruzko aldez 
aurretiko informaziorik izan ezean, 2. Kapitulua kontuan hartuta Beta(1,1) banaketa bat 
erabiliko da, p=0.5 baten eta 3 unitateko lagin-tamainaren baliokidea. 
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Estratu bakoitzean eta t=2015. urtean merkataritza elektronikoan jarduteko a posteriori 
probabilitateak lortzeko, R-ko R2WinBUGS liburutegia erabili dugu, eta liburutegi horrek 
WinBUGS software estatistikora jotzen du analisi bayestarra  Markov chain Monte Carlo 
(MCMC) metodoak erabiliz egiteko. Erabilitako funtzio nagusiak dokumentu honen II. 
Eranskinean agertzen dira. 

Berriro ere (7.1) eta (7.2) formulak erabiliz, merkataritza elektronikoan diharduten saltokien 
proportzioaren estimazioak kalkulatuko dira Gipuzkoa eta jarduera ekonomiko bakoitzerako. 

7.4 Analisia  

Ondoren, bi paradigmak aplikatzean lortu ditugun emaitzak aurkeztuko ditugu. Lehenik eta 
behin, Gipuzkoan eta k jarduera ekonomiko bakoitzean merkataritza elektronikoan diharduten 
saltokien proportzioen inguruko estimazioak (bi metodoei jarraikiz lortutakoak) jaso ditugu 
ondorengo taulan.  

Bigarrenik, bi tekniken bidez lortutako estimazioak eta dagozkien sinesgarritasun-tarteak eta 
konfiantza-tarteak jasotzen dituzten grafiko batzuk ditugu. Estimazio bayestarren kasuan, 
parametro bakoitzaren a posteriori dentsitate-funtzioa ere jasota dago. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://es.wikipedia.org/wiki/Estad%C3%ADstica_bayesiana
http://halweb.uc3m.es/esp/Personal/personas/causin/esp/2012-2013/SMB/Tema8.pdf
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  Met. bayestarrak Met. frekuentistak 

 Sektorizazioa 𝐩𝐛 Sinesg.-tartea 
(% 95) 

𝐩𝐟 Konf.-tartea (% 95) 

 Gipuzkoa 0.2660 (0.2465, 0.2845) 0.2819 (0.2565, 0.3074) 

A38 Erauzpen-industriak, koke-lantegiak eta 
petrolioaren birfinketa (02) 

0.0017 (0, 0.0160) 0 0 

Elikadura-industriak, edariak, tabakoa 
(03) 

0.3281 (0.1990, 0.4694) 0.35 (0.1772, 0.5228) 

Ehungintza, jantzigintza, larrugintza eta 
oinetakogintza (04) 

0.2401 (0.1281, 0.3654) 0.2329 (0.0727, 0.3931) 

Zura, papera eta arte grafikoak (05) 0.3815 (0.2504, 0.5135) 0.3873 (0.2178, 0.5568) 

Industria kimikoa eta produktu 
farmazeutikoak (07) 

0.3585 (0.2277, 0.5181) 0.3962 (0.2178, 0.5568) 

Kautxua eta plastikoak (09)  0.2173 (0.1321, 0.3167) 0.2440 (0.1191, 0.3688) 

Metalurgia eta produktu metalikoak 
(10) 

0.3001 (0.2131, 0.3987) 0.3355 (0.2070, 0.4640) 

Produktu informatikoak eta 
elektronikoak. Material eta ekipo 
elektrikoa (11)  

0.4068 (0.3138, 0.5085) 0.3997 (0.2921, 0.5073) 

Makineria eta ekipoa (13)  0.3319 (0.2410, 0.4360) 0.3652 (0.2477, 0.4828) 

Garraio-materiala (14) 0.3460 (0.2207, 0.4831) 0.3628 (0.2057, 0.5199) 

Altzariak eta beste manufaktura batzuk 
(15) 

0.3366 (0.2223, 0.4637) 0.3792 (0.2131, 0.5453) 

Energia elektrikoa, gasa eta lurruna 
(16) 

0.1260 (0.0176, 0.3052) 0.1369 (-0.0186, 0.2924) 

Ur-hornidura eta saneamendua (17) 0.1173 (0.0432, 0.2266) 0.1418 (0.0245, 0.2591) 

Eraikuntza (18) 0.1629 (0.1015, 0.2341) 0.1932 (0.0931, 0.2933) 

Merkataritza eta ibilgailuen 
konponketa (19) 

0.3164 (0.2701, 0.3631) 0.3334 (0.2762, 0.3905 ) 

Garraioa eta biltegiratzea (20) 0.1379 (0.0809, 0.2127) 0.1327 (0.0455, 0.2199) 

Ostalaritza (21) 0.1499 (0.1096, 0.2014) 0.1649 (0.1031, 0.2268) 

Telekomunikazioak, informatika eta 
komunikabideak (22) 

0.4770 (0.3979, 0.5464) 0.4626 (0.3725, 0.5527) 

Finantza-jarduerak eta aseguruak (25) 0.1811 (0.1174, 0.2538) 0.1815 (0.0994, 0.2635) 

Higiezin-jarduerak (26) 0.2026 (0.1174, 0.3138) 0.2364 (0.1023, 0.3704) 

I+G, aholkularitzak eta beste jarduera 
profesional eta tekniko batzuk (27) 

0.3873 (0.3262, 0.4523) 0.3891 (0.3134, 0.4648) 

Zerbitzu osagarriak (29) 0.2225 (0.1350, 0.3287) 0.2491 (0.1243, 0.3740) 

Bidaia-agentziak eta bidaia-agentzia 
handizkariak (30) 

0.3745 (0.2335, 0.5237) 0.3884 (0.2118, 0.5650) 

Administrazio Publikoa eta defentsa 
(31) 

0.1788 (0.1006, 0.2836) 0.2014 (0.0779, 0.3249) 

Hezkuntza (32) 0.3582 (0.2810, 0.4493) 0.3654 (0.2478, 0.4829) 

Osasun-jarduerak (33) 0.3428 (0.2383, 0.4556) 0.3862 (0.2455, 0.5270) 

Gizarte-jarduerak, jolas-jarduerak, 
kultura-jarduerak eta beste batzuk (34) 

0.1928 (0.1515, 0.2396) 0.2027 (0.1462, 0.2592) 
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Est. bayestarrak 

Est. frekuentistak 

Est. bayestarrak 

Est. frekuentistak 

Merkataritza elektronikoan diharduten establezimenduen proportzioa 

Merkataritza elektronikoan diharduten  
establezimenduen proportzioa 

Merkataritza elektronikoan diharduten  
establezimenduen proportzioa 

Merkataritza elektronikoan diharduten  
establezimenduen proportzioa 

Aktibitate sektorizazioa A38 

 

Erauzpen-industriak, koke-lantegiak eta 
petrolioaren birfinketa (02) 

Elikadura-industriak, edariak, tabakoa (03) 
Ehungintza, jantzigintza, larrugintza eta 

 oinetakogintza (04) 
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Merkataritza elektronikoan diharduten  
establezimenduen proportzioa 

Merkataritza elektronikoan diharduten  
establezimenduen proportzioa 

Merkataritza elektronikoan diharduten  
establezimenduen proportzioa 

Merkataritza elektronikoan diharduten  
establezimenduen proportzioa 

Aktibitate sektorizazioa A38 

 

Merkataritza elektronikoan diharduten  
establezimenduen proportzioa 

Merkataritza elektronikoan diharduten  
establezimenduen proportzioa 

Merkataritza elektronikoan diharduten  
establezimenduen proportzioa 

Merkataritza elektronikoan diharduten  
establezimenduen proportzioa 

Aktibitate sektorizazioa A38 

 

Zura, papera eta arte grafikoak (05) 
 

Industria kimikoa eta produktu 
 farmazeutikoak (07) 

 

Kautxua eta plastikoak (09) Metalurgia eta produktu metalikoak (10) 

Produktu informatikoak eta elektronikoak. 
 Material eta ekipo elektrikoa (11) 

 
Makineria eta ekipoa (13) 

 
 

Garraio-materiala (14) 
 

Altzariak eta beste manufaktura batzuk (15) 
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Merkataritza elektronikoan diharduten  
establezimenduen proportzioa 

Merkataritza elektronikoan diharduten  
establezimenduen proportzioa 

Merkataritza elektronikoan diharduten  
establezimenduen proportzioa 

Merkataritza elektronikoan diharduten  
establezimenduen proportzioa 

Merkataritza elektronikoan diharduten  
establezimenduen proportzioa 

Merkataritza elektronikoan diharduten  
establezimenduen proportzioa 

Merkataritza elektronikoan diharduten  
establezimenduen proportzioa 

Merkataritza elektronikoan diharduten  
establezimenduen proportzioa 

Aktibitate sektorizazioa A38 

Aktibitate sektorizazioa A38 

 

 

Garraioa eta biltegiratzea (20) 
 
 

Ostalaritza (21) 
 
 

Telekomunikazioak, informatika eta komunikabideak (22) 
 

Finantza-jarduerak eta aseguruak (25) 

Higiezin-jarduerak (26) 
 

I+G, aholkularitzak eta beste jarduera profesional eta 
tekniko batzuk (27) 

 

Zerbitzu osagarriak (29) 
 
 

Bidaia-agentziak eta bidaia-agentzia handizkariak (30) 
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7.5 Emaitzak 

Eredu bayestarrarekin lortutako zenbatesleak, oro har, metodo tradizionalekin lortutakoak 
baino efizienteagoak izaten dira. Teknika bayestarren bidez, tarteen zabalera murritz daiteke 
eta denbora-korrelazioari euts dakioke. Gainera, ausazko aldagai bakoitzaren a posteriori 
probabilitatearen banaketa lor daiteke, eta hipotesiak kontrastatzeko aukera ematen du 
horrek. Hau da, balio horrek balio jakin bat baino txikiagoa edo handiagoa izateko duen 
probabilitatea ezar dezakegu estimazio bakoitzean. 

Zuzeneko zenbatesleek baliozkoak eta/edo efizienteak ez diren emaitzak eman ditzakete, 
laginaren tamaina mugatua denean edo behaketa gehienak aldagaiak hartzen dituen balioen 
muturretako batean daudenean. Taulan, bi datu bitxi ikus ditzakegu. Lehenik eta behin, 
"Erauzpen-industriak, koke-lantegiak eta petrolioaren birfinketa (02)" jarduera ekonomikoaren 
kasuan, zenbatetsitako proportzioa 0 da, konfiantza-tartea bezalaxe. Izan ere, laginean 
jarduera honi lotuta sartu diren saltoki urriak ez dira merkataritza elektronikoan aritzen, eta, 
beraz, eskuragarri dauden datuek emaitza hori dakarte. Bigarrenik, "Energia elektrikoa, gasa 
eta lurruna (16)" jardueraren konfiantza-tartearen beheko muturra negatiboa da. Ez du 
zentzurik probabilitate bat 0 baino txikiagoa izateak, eta, beraz, balio hori 0 batekin zuzendu 
beharko da eskuz.  Eredu bayestarraren bidez, arazo horiek zuzenduta geratzen dira. Izan ere, 
ereduak eskuragarri dagoen informazio osagarri eta aldez aurretiko guztia baliatzeko eta 
laginaren tamaina baliokidea handitzeko aukera ematen du, eta emaitzak koherenteak izaten 
dira beti. 

Aktibitate sektorizazioa A38 

Merkataritza elektronikoan diharduten  
establezimenduen proportzioa 

Merkataritza elektronikoan diharduten  
establezimenduen proportzioa 

Merkataritza elektronikoan diharduten  
establezimenduen proportzioa 

Merkataritza elektronikoan diharduten  
establezimenduen proportzioa 

 

Administrazio publikoa eta defentsa (31) 
 

Hezkuntza (32) 
 

Osasun-jarduerak (33) 
 

Gizarte-jarduerak, jolas-jarduerak, kultura-jarduerak 
eta beste batzuk (34) 
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8. Ondorioak 

Azkenik, Estatistika eta Matematika Metodologietan prestatzeko eta ikertzeko Bekari esker 
egindako lan honen ondorio nagusiak azalduko ditugu kapitulu honetan.  

8.1 Paradigma 

Ikuspegi frekuentistaren eta ikuspegi bayestarraren artean dagoen alde nagusia zera da, 
lehenak datuak eskuratu aurretik zegoen informazio guztia –teorikoa zein enpirikoa– 
baztertzen duela. Estatistika bayestarrean, ordea, ez da hutsetik abiatuta lan egiten. Aitzitik, 
aldez aurretiko ezagutza formalki eta esplizituki hartzen da kontuan, eta probabilitate 
subjektiboak biltzen ditu, hau da, ikertzailearen intuiziotik sortzen direnak. Probabilitate 
subjektibo horiek ez dute zertan arrazoi intuitibo soiletan oinarrituta egon. Aitzitik, zerikusi 
handia dute ikertzailearen trebeziarekin eta aldez aurretiko esperientziarekin. 

Estatistika bayestarra baliagarria izan daiteke laginaren tamaina nabarmen murrizten denean. 
Izan ere, aldez aurretiko datu orokorrez gain gertaera berriak eta ikertzaileek berek 
errealitatearen portaeraren inguruan dituzten aurreikuspenak kontuan hartzen direnez gero, 
datuak ez dira indargabetzen. Hau da, estatistika bayestarraren abantaila nagusia isolatuta ez 
diharduela da. Izan ere, aldez aurretiko ezagutzan oinarrituta dago, eta eskaintzen duen 
analisi-esparrua askoz aberatsagoa da, ikertzaileari askatasuna ematen baitio bere 
esperimentuetan emaitza jakin batzuk lortzeko probabilitatea baloratzeko. 

Ikuspegi bayestarraren ezaugarri bereizgarri bat zera da, laginaren tamaina oso handia denean, 
aukeratzen den a priori banaketak oso garrantzi txikia izan ohi duela eta egiantzaren mende 
dagoela. Zirkunstantzia horrek agerian uzten du metodo bayestarra batez ere laginaren 
tamainak oso handiak ez direnean dela baliagarria. 
 

8.2 Konputazioa 

Teknika bayestarrak inplementatzeko, konputazio-ahalegin handia egin behar izaten da. 
Zenbait kasutan, beharrezkoak diren integral anizkoitzak ezin dira analitikoki ebatzi. 
Horregatik, integralak hainbat dimentsiotan kalkulatzea edo hurbiltzea ahalbidetuko duten 
zenbakizko metodo efizienteak behar dira. Zorionez, XX. mendearen bigarren erdialdean 
simulazio estokastikoko metodoetan oinarritutako zenbakizko teknika malgu eta efizienteak 
garatzen hasi ziren. Horren eta birtualizazioari esker konputu-ekipoen prozesatze- eta 
biltegiratze-ahalmen handiagoa ekarri duen teknologiaren garapenaren ondorioz, metodo 
bayestarrak gora egiten ari dira.  

Gaur egun, oso ahalmen handiko softwarea eta metodologiak daude edonoren eskueran. Lan 
honetan, nagusiki R eta WinBUGS (Bayesian Inference Using Gibbs Sampling) erabili ditugu 
estimazio bayestarrak egiteko, baina aukera horiek merkatuan eskuragarri dauden aukera 
ugarietako bi baino ez dira. 

8. Kapitulua 

 

https://es.wikipedia.org/wiki/Proceso_estoc%C3%A1stico
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8.3 Estatistika ofiziala 

Teknika berriak –eta teknika bayestarrak bereziki– erabiltzeko interesa gero eta handiagoa da 
Estatistika Ofizialaren barruan. Gero eta ohikoagoa da erakundeei eremu txikien edo hasieran 
planifikatu ez ziren eta, horregatik, laginean ongi ordezkatuta ez dauden (edota, besterik gabe, 
ordezkatuta ez dauden) eremu batzuen inguruko estimazioak egin ditzaten eskatzea.  

Normalean, eskualde handietarako edo eremu txikietako agregatuetarako estimazio 
fidagarriak emango dituen lagin-tamaina bat aukeratzen da, baina eremu handietarako 
erabilitako estatistika-metodoak nekez aplika daitezke eremu txikietan. Izan ere, zuzeneko 
zenbatesle klasikoek oso errore estandar handiak izaten dituzte, edota ezin dira kalkulatu, 
planifikatu gabeko eremuren bateko laginik ez dagoelako. 

7. Kapituluan ikusi dugunez, planteamendu bayestar alternatibo bat estratu bakoitzari buruz 
eskuragarri dagoen informaziotik abiatuta aldez aurretiko banaketa bat sortzea eta, era 
horretan, laginaren datuek ematen duten ezagutza handiagoa edukitzea da. Aurkeztutako 
aplikazioan, inkesta beretik eta eremu txiki berean lortutako aurreko urteko informazioa 
erabiltzen zen, denbora-korrelazio berari jarraitzen zitzaion eta estimazio efizienteagoak 
lortzen ziren. 

Beste planteamendu orokorrago bat eredu misto hierarkizatuena da. Eredu horietan, 
eskuragarri dagoen aldez aurretiko informazioa zein informazio osagarria erabiltzen da eredu 
aurresalea sortzeko. Hau da, datuen hierarkiak, lotutako eremuek, aurreko urteetako 
informazioak edota horiek guztiek ematen duten informazioa erabiltzen da eredu beraren 
barruan. Ereduetan oinarritutako zenbatesleak teknika bayestarren edo teknika frekuentisten 
bidez lor daitezke.   
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I. Eranskina 

#Estimación de una media normal 
 
#Primer estrato 
 
#Simulación de datos N(27,5), n=250 
 
set.seed(1) 
n1<-250 
y1<-rnorm(n1,27,sqrt(5)) 
 
#Resumen 
mean(y1)# 27.04957 
var(y1)# 4.63241 
 
#Verosimilitud 
plot(density(y1)) 
 
data.m1<-list(y1=y1,n1=n1) 
par.m1 <- c("mu1","var1","sd1") 
 
inits<-function(){ 
  list(mu1=runif(1,25,35),tau1=runif(1,0.00001,0.01))} 
 
#Cargamos librería 
library(R2WinBUGS) 
 
#Previa 1, N(30,0.5) 
mu_p1.1<-30 
var_p1.1<-0.5 
bmbugs1 <- bugs(data.m1,inits, par.m1, "M1.txt", 
                n.chains = 1, n.iter = 10000, n.burnin=1000, 
                bugs.directory ="...",debug=F) 
 
print(bmbugs1,digits=4) 
#27.1545 
 
mu1<- bmbugs1$sims.array[,1 ,"mu1"] 
quantile(mu1, c(0.025, 0.975)) 
sd1<- bmbugs1$sims.array[,1 ,"sd1"] 
quantile(sd1, c(0.025, 0.975)) 
 
#Gráfico 
z <- seq(0,1000,length=10000) 
 
nombres<-list("Previa","Veros.","Posterior") 
colores<-c("blue","green","red") 
 
plot(density(mu1), main="",cex.axis=2, xlab="",lwd=5,col="red", ylim=c(0,3), 
xlim=c(18,45),ylab="") 
title(main=expression(paste("Distribuciones de ", mu[1]," con una previa 
informativa y n=250")),cex.main=2.1,xlab=expression(mu[1]),cex.lab=3) 
lines(z,dnorm(z,mu_p1.1,sqrt(var_p1.1)), main="",col="blue",type="l",lwd = 5) 
lines(density(y1),ylab="",col="green",type="l",lwd = 5) 
legend(31,2.5,nombres,pch=c(15,15,15),col=colores,cex=2) 
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#Previa 2, N(30,0.02) 
mu_p1_2<-30 
var_p1_2<-0.02 
bmbugs1_2 <- bugs(data.m1,inits, par.m1, "M1_2.txt",n.chains = 1, n.iter = 10000, 
n.burnin=1000, bugs.directory ="...",debug=F) 
 
print(bmbugs1_2,digits=4) 
#28.8602 
 
mu1_2<- bmbugs1_2$sims.array[,1 ,"mu1"] 
quantile(mu1_2, c(0.025, 0.975)) 
sd1_2<- bmbugs1_2$sims.array[,1 ,"sd1"] 
quantile(sd1_2, c(0.025, 0.975)) 
 
#Gráfico 
z <- seq(0,1000,length=10000) 
 
nombres<-list("Previa","Veros.","Posterior") 
colores<-c("blue","green","red") 
 
plot(density(mu1_2), main="",cex.axis=2, xlab="",lwd=5,col="red", ylim=c(0,3), 
xlim=c(18,45),ylab="") 
title(main=expression(paste("Distribuciones de ", mu[1]," con una previa más 
informativa y n=250")),cex.main=2.1,xlab=expression(mu[1]),cex.lab=3) 
lines(z,dnorm(z,mu_p1_2,sqrt(var_p1_2)), main="",col="blue",type="l",lwd = 5) 
lines(density(y1),ylab="",col="green",type="l",lwd = 5) 
legend(31,2.5,nombres,pch=c(15,15,15),col=colores,cex=2) 
 
#Disminuímos tamaño muestral del primer estrato 
 
#Simulación de datos, N(27,5) n=25 
set.seed(1) 
n1_n<-25 
y1_n<-rnorm(n1_n,27,sqrt(5)) 
 
#Resumen 
mean(y1_n)# 27.3772 
var(y1_n)# 4.5135 
 
#Verosimilitud 
plot(density(y1_n)) 
 
data.m1_n<-list(y1=y1_n,n1=n1_n) 
par.m1 <- c("mu1","var1","sd1") 
 
inits<-function(){ 
  list(mu1=runif(1,25,35),tau1=runif(1,0.00001,0.01))} 
 
#Previa 1, N(30,0.5) 
mu_p1.1<-30 
var_p1.1<-0.5 
bmbugs1_n <- bugs(data.m1_n,inits, par.m1, "M1.txt", 
                  n.chains = 1, n.iter = 10000, n.burnin=1000, 
                  bugs.directory ="...",debug=F) 
 
print(bmbugs1_n,digits=4) 
#28.1486 
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mu1_n<- bmbugs1_n$sims.array[,1 ,"mu1"] 
quantile(mu1_n, c(0.025, 0.975)) 
sd1_n<- bmbugs1_n$sims.array[,1 ,"sd1"] 
quantile(sd1_n, c(0.025, 0.975)) 
 
#Gráfico 
z <- seq(0,1000,length=10000) 
 
nombres<-list("Previa","Veros.","Posterior") 
colores<-c("blue","green","red") 
 
plot(density(mu1_n),main="",cex.axis=2, xlab="",lwd=5,col="red", ylim=c(0,3), 
xlim=c(18,45),ylab="") 
title(main=expression(paste("Distribución de ", mu[1]," con una previa 
informativa y n=25")),cex.main=2.1,xlab=expression(mu[1]),cex.lab=3) 
lines(z,dnorm(z,mu_p1.1,sqrt(var_p1.1)), main="",col="blue",type="l",lwd = 5) 
lines(density(y1),ylab="",col="green",type="l",lwd = 5) 
legend(30,2.5,nombres,pch=c(15,15,15),col=colores,cex=2) 
 
#Previa 2, N(30,0.02) 
mu_p1_2<-30 
var_p1_2<-0.02 
bmbugs1_2_n <- bugs(data.m1_n,inits, par.m1, "M1_2.txt",n.chains = 1, n.iter = 
10000, n.burnin=1000, bugs.directory ="…",debug=F) 
 
print(bmbugs1_2_n,digits=4) 
#29.8761 
 
mu1_2_n<- bmbugs1_2_n$sims.array[,1 ,"mu1"] 
quantile(mu1_2_n, c(0.025, 0.975)) 
sd1_2_n<- bmbugs1_2_n$sims.array[,1 ,"sd1"] 
quantile(sd1_2_n, c(0.025, 0.975)) 
 
#Gráfico 
z <- seq(0,1000,length=10000) 
 
nombres<-list("Previa","Veros.","Posterior") 
colores<-c("blue","green","red") 
 
plot(density(mu1_2_n), main="",cex.axis=2, xlab="",lwd=5,col="red", ylim=c(0,3), 
xlim=c(18,45),ylab="") 
title(main=expression(paste("Distribución de ", mu[1]," con una previa más 
informativa y n=25")),cex.main=2.1,xlab=expression(mu[1]),cex.lab=3) 
lines(z,dnorm(z,mu_p1_2,sqrt(var_p1_2)), main="",col="blue",type="l",lwd = 5) 
lines(density(y1),ylab="",col="green",type="l",lwd = 5) 
legend(31.5,2.5,nombres,pch=c(15,15,15),col=colores,cex=2) 
 
#Previa 3, N(0,1000) 
mu_p1_3<-0 
var_p1_3<-1000 
bmbugs1_3_n <- bugs(data.m1_n,inits, par.m1, "M1_plana.txt",n.chains = 1, n.iter 
= 10000, n.burnin=1000, bugs.directory ="...",debug=F) 
 
print(bmbugs1_3_n,digits=4) 
#27.3572 
 
mu1_3_n<- bmbugs1_3_n$sims.array[,1 ,"mu1"] 
quantile(mu1_3_n, c(0.025, 0.975)) 
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sd1_3_n<- bmbugs1_3_n$sims.array[,1 ,"sd1"] 
quantile(sd1_3_n, c(0.025, 0.975)) 
 
#Gráficos 
z <- seq(0,1000,length=10000) 
 
nombres<-list("Previa","Veros.","Posterior") 
colores<-c("blue","green","red") 
 
plot(density(mu1_3_n),main="",cex.axis=2, xlab="",lwd=5,col="red", ylim=c(0,3), 
xlim=c(18,45),ylab="") 
title(main=expression(paste("Distribución de ", mu[1]," con una previa plana y 
n=25")),cex.main=2.1,xlab=expression(mu[1]),cex.lab=3) 
lines(z,dnorm(z,mu_p1_3,sqrt(var_p1_3)), main="",col="blue",type="l",lwd = 5) 
lines(density(y1),ylab="",col="green",type="l",lwd = 5) 
legend(30,2.5,nombres,pch=c(15,15,15),col=colores,cex=2) 
 
##Segundo estrato 
 
#Simulación de datos N(300,40), n=150 
set.seed(1) 
n2<-150 
y2<-rnorm(n2,300,sqrt(40)) 
 
#Resumen 
mean(y2) #300.1376 
var(y2)#   32.70165 
 
#Verosimilitud 
plot(density(y2)) 
 
data.m2<-list(y2=y2,n2=n2) 
par.m2 <- c("mu2","var2","sd2") 
 
inits<-function(){ 
  list(mu2=runif(1,350,450),tau2=runif(1,0.00001,0.01))} 
 
mu_p2.1<-310 
var_p2.1<-10 
 
bmbugs2 <- bugs(data.m2,inits, par.m2, "M2.txt", 
                n.chains = 1, n.iter = 10000, n.burnin=1000, 
                bugs.directory ="D:/DATOS/NGUTIEAR/Desktop/WinBUGS14/",debug=F) 
 
print(bmbugs2,digits=4) 
#300.3694 
 
mu2<- bmbugs2$sims.array[,1 ,"mu2"] 
quantile(mu2, c(0.025, 0.975)) 
sd2<- bmbugs2$sims.array[,1 ,"sd2"] 
quantile(sd2, c(0.025, 0.975)) 
 
#Gráfico 
z <- seq(0,1000,length=10000) 
 
nombres<-list("Previa","Veros.","Posterior") 
colores<-c("blue","green","red") 
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plot(density(mu2), main="",cex.axis=2, xlab="",lwd=5,col="red", 
xlim=c(285,337),ylim=c(0,0.85), ylab="") 
title(main=expression(paste("Distribuciones de ", mu[2]," con una previa 
informativa y n=150")),cex.main=2.1,xlab=expression(mu[2]),cex.lab=3) 
lines(z,dnorm(z,mu_p2.1,sqrt(var_p2.1)), main="",col="blue",type="l",lwd = 5) 
lines(density(y2),ylab="",col="green",type="l",lwd = 5) 
legend(311,0.87,nombres,pch=c(15,15,15),col=colores,cex=2) 
 
#Previa 2, N(310,0.5) 
mu_p2.2<-310 
var_p2.2<-0.5 
 
bmbugs2_2 <- bugs(data.m2,inits, par.m2, "M2_2.txt",n.chains = 1, n.iter = 10000, 
n.burnin=1000, bugs.directory ="...",debug=F) 
 
print(bmbugs2_2,digits=4) 
#303.9940 
 
mu2_2<- bmbugs2_2$sims.array[,1 ,"mu2"] 
quantile(mu2_2, c(0.025, 0.975)) 
sd2_2<- bmbugs2_2$sims.array[,1 ,"sd2"] 
quantile(sd2_2, c(0.025, 0.975)) 
 
#Gráfico 
z <- seq(0,1000,length=10000) 
 
nombres<-list("Previa","Veros.","Posterior") 
colores<-c("blue","green","red") 
 
plot(density(mu2_2), main="",cex.axis=2, xlab="",lwd=5,col="red", 
xlim=c(285,337),ylim=c(0,0.85), ylab="") 
title(main=expression(paste("Distribución de ", mu[2]," con una previa más 
informativa y n=150")),cex.main=2.1,xlab=expression(mu[2]),cex.lab=3) 
lines(z,dnorm(z,mu_p2.2,sqrt(var_p2.2)), main="",col="blue",type="l",lwd = 5) 
lines(density(y2),ylab="",col="green",type="l",lwd = 5) 
legend(311,0.87,nombres,pch=c(15,15,15),col=colores,cex=2) 
 
#Disminuimos tamaño muestral 
 
#Simulación de datos N(300,40), n=15 
set.seed(1) 
n2_n<-15 
y2_n<-rnorm(n2_n,300,sqrt(40)) 
 
#Resumen 
mean(y2_n) #300.6378 
var(y2_n)#   41.42809 
 
#Verosimilitud 
plot(density(y2_n)) 
 
data.m2_n<-list(y2=y2_n,n2=n2_n) 
par.m2 <- c("mu2","var2","sd2") 
 
inits<-function(){ 
  list(mu2=runif(1,350,450),tau2=runif(1,0.00001,0.01))} 
 
 



 

II. ERANSKINA     83  

 

#Previa 1, N(310, 10)  
mu_p2.1<-310 
var_p2.1<-10 
 
bmbugs2_n <- bugs(data.m2_n,inits, par.m2, "M2.txt", 
                  n.chains = 1, n.iter = 10000, n.burnin=1000, 
                  bugs.directory ="…",debug=F) 
 
print(bmbugs2_n,digits=4) 
#303.0441 
 
mu2_n<- bmbugs2_n$sims.array[,1 ,"mu2"] 
quantile(mu2_n, c(0.025, 0.975)) 
sd2_n<- bmbugs2_n$sims.array[,1 ,"sd2"] 
quantile(sd2, c(0.025, 0.975)) 
 
#Gráfico 
z <- seq(0,1000,length=10000) 
 
nombres<-list("Previa","Veros.","Posterior") 
colores<-c("blue","green","red") 
 
plot(density(mu2_n),main="",cex.axis=2, xlab="",lwd=5,col="red", 
xlim=c(285,330),ylim=c(0,0.85), ylab="") 
title(main=expression(paste("Distribución de ", mu[2]," con una previa 
informativa y n=15")),cex.main=2.1,xlab=expression(mu[2]),cex.lab=3) 
lines(z,dnorm(z,mu_p2.1,sqrt(var_p2.1)), main="",col="blue",type="l",lwd = 5) 
lines(density(y2_n),ylab="",col="green",type="l",lwd = 5) 
legend(285,0.85,nombres,pch=c(15,15,15),col=colores,cex=2) 
 
#Previa 2, N(310, 0.5)  
mu_p2.2<-310 
var_p2.2<-0.5 
 
bmbugs2_2_n <- bugs(data.m2_n,inits, par.m2, "M2_2.txt",n.chains = 1, n.iter = 
10000, n.burnin=1000, bugs.directory ="...",debug=F) 
 
print(bmbugs2_2_n,digits=4) 
#309.4350 
 
mu2_2_n<- bmbugs2_2_n$sims.array[,1 ,"mu2"] 
quantile(mu2_2, c(0.025, 0.975)) 
sd2_2_n<- bmbugs2_2_n$sims.array[,1 ,"sd2"] 
quantile("sd2_2_n", c(0.025, 0.975)) 
 
#Gráfico 
z <- seq(0,1000,length=10000) 
 
nombres<-list("Previa","Veros.","Posterior") 
colores<-c("blue","green","red") 
 
plot(density(mu2_2_n), main="",cex.axis=2, xlab="",lwd=5,col="red", 
xlim=c(285,330),ylim=c(0,0.85), ylab="") 
title(main=expression(paste("Distribución de ", mu[2]," con una previa más 
informativa y n=15")),cex.main=2.1,xlab=expression(mu[2]),cex.lab=3) 
lines(z,dnorm(z,mu_p2.2,sqrt(var_p2.2)), main="",col="blue",type="l",lwd = 5) 
lines(density(y2_n),ylab="",col="green",type="l",lwd = 5) 
legend(284,0.85,nombres,pch=c(15,15,15),col=colores,cex=2) 
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#Previa plana, N(0,1000) 
mu_p2_3<-0 
var_p2_3<-1000 
bmbugs2_3_n <- bugs(data.m2_n,inits, par.m2, "M2_plana.txt",n.chains = 1, n.iter 
= 10000, n.burnin=1000, bugs.directory ="...",debug=F) 
 
print(bmbugs2_3_n,digits=4) 
#300.6254 
 
mu2_3_n<- bmbugs2_3_n$sims.array[,1 ,"mu2"] 
quantile(mu2_3_n, c(0.025, 0.975)) 
sd2_3_n<- bmbugs2_3_n$sims.array[,1 ,"sd2"] 
quantile(sd2_3_n, c(0.025, 0.975)) 
 
#Gráfico 
z <- seq(0,1000,length=10000) 
 
nombres<-list("Previa","Veros.","Posterior") 
colores<-c("blue","green","red") 
 
plot(density(mu2_3_n), main="",cex.axis=2, xlab="",lwd=5,col="red", 
ylim=c(0,0.85), xlim=c(285,330),ylab="") 
title(main=expression(paste("Distribución de ", mu[2]," con una previa plana y 
n=15")),cex.main=2.1,xlab=expression(mu[2]),cex.lab=3) 
lines(z,dnorm(z,mu_p2_3,sqrt(var_p2_3)), main="",col="blue",type="l",lwd = 5) 
lines(density(y2_n),ylab="",col="green",type="l",lwd = 5) 
legend(306,0.85,nombres,pch=c(15,15,15),col=colores,cex=2) 
 
 
#M1.txt 
model{ 
#Likelihood 
for (i in 1:n1){ 
y1[i]~dnorm(mu1,tau1)} 
#Prior 
mu1~dnorm(30,2) 
tau1~dgamma(0.0001,0.0001) 
var1<-1/tau1 
sd1<-sqrt(var1)} 
 
#M1_2.txt 
model{ 
#Likelihood 
for (i in 1:n1){ 
y1[i]~dnorm(mu1,tau1)} 
#Prior 
mu1~dnorm(30,50) 
tau1~dgamma(0.0001,0.0001) 
var1<-1/tau1 
sd1<-sqrt(var1)} 
 
#M1_plana.txt 
model{ 
#Likelihood 
for (i in 1:n1){ 
y1[i]~dnorm(mu1,tau1)} 
#Prior 
mu1~dnorm(30,2) 
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tau1~dgamma(0.0001,0.0001) 
var1<-1/tau1 
sd1<-sqrt(var1)} 
 
#M2.txt 
model{ 
#Likelihood 
for (i in 1:n2){ 
y2[i]~dnorm(mu2,tau2)} 
#Prior 
mu2~dnorm(310,0.1) 
tau2~dgamma(0.0001,0.0001) 
var2<-1/tau2 
sd2<-1/sqrt(tau2)} 
 
#M2_2.txt 
model{ 
#Likelihood 
for (i in 1:n2){ 
y2[i]~dnorm(mu2,tau2)} 
#Prior 
mu2~dnorm(310,2) 
tau2~dgamma(0.0001,0.0001) 
var2<-1/tau2 
sd2<-1/sqrt(tau2)} 
 
#M2_plana.txt 
model{ 
#Likelihood 
for (i in 1:n2){ 
y2[i]~dnorm(mu2,tau2)} 
#Prior 
mu2~dflat() 
tau2~dgamma(0.0001,0.0001) 
var2<-1/tau2 
sd2<-1/sqrt(tau2) 
 
##Estimación de una proporción 
 
#Funciones necesarias para obtener a y b 
 
#p media y tamaño muestral 
ab_pn<-function(p,n){ 
  a<-p*(n-1) 
  b<-n-a-1 
  return(c(a,b))} 
 
#intervalo de confianza al 95% 
ab_pp<-function(p1,p2){ 
  p<-(p1+p2)/2 
  n<-4*p*(1-p)/(p-p1)**2 
  return(ab_pn(p,n))} 
 
#p media y varianza 
ayb_pv<-function(p,v){ 
  a<-p**2*(1-p)/v-p 
  b<-p*(1-p)**2/v+p-1 
  return(c(a,b))} 
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#Función para obtener la distribución posterior 
beta_posterior<-function(a,b,y,n){ 
  a2<-a+y 
  b2<-b+n-y 
  p2<-a2/(a2+b2) 
  return(c(a2,b2,p2))} 
 
#Primer estrato 
 
#a) p=0.3 n=50 
ab_pn(0.3,50)#17.7, 41.3 
 
#b) p=0.3 (0.2,0.4) 
ab_pp(0.2,0.4)#24.9 58.1 (tamaño equivalente=83) 
 
#c) Sin conocimiento 
#a=1, b=1 
 
#Simulación de datos datos, p=0,25 
set.seed(1) 
a<-runif(50,0,1) 
x1<-rep(0,50) 
for(i in 1:50){ 
  if(a[i]<=0.25){x1[i]<-1}} 
 
x1<-factor(x1) 
summary(x1) 
#0 40 
#1 10 
 
#Despejamos a y b de la verosimilitud, p=0.2, n=50. 
ab_pn(0.2,50) #9.8 39.2 
 
#a) Previa 1 
 
#Posterior 
pos1<-beta_posterior(14.7,34.3,10,50) 
pos1 #24.7000000 74.3000000  0.2494949 
 
#gráfico 1 
 
plot(z,dbeta(z,14.7, 34.3),ylab="",xlab="",cex.axis=2,col="blue",type="l",lwd = 
5,ylim=c(0,10)) 
title(main=expression("Conocimiento previo: p=0.3  
n=50"),cex.main=2.1,xlab=expression(p[1.1]),cex.lab=3) 
lines(z,dbeta(z,9.8, 39.2),ylab="",col="green",type="l",lwd = 5,ylim=c(0,8)) 
lines(z,dbeta(z,pos1[1], pos1[2]), main="" ,col="red",type="l",lwd = 5) 
legend(0.45,8,nombres,pch=c(15,15,15),col=colores,cex=2) 
 
#b) Previa 2 
 
#Posterior 
pos2<-beta_posterior(24.9,58.1,10,50) 
pos2 #34.900000 98.100000  0.262406 
 
#gráfico 2 
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plot(z,dbeta(z,24.9, 58.1),ylab="",xlab="",cex.axis=2,col="blue",type="l",lwd = 
5,ylim=c(0,11)) 
title(main=expression(paste("Conocimiento previo: ", 
IC^{95~'%'},"=(0.2,0.4)")),cex.main=2.1,xlab=expression(p[1.2]),cex.lab=3) 
lines(z,dbeta(z,9.8, 39.2),ylab="",col="green",type="l",lwd = 5,ylim=c(0,8)) 
lines(z,dbeta(z,pos2[1], pos2[2]), main="" ,col="red",type="l",lwd = 5) 
legend(0.45,8,nombres,pch=c(15,15,15),col=colores,cex=2) 
 
#c) Previa 3 
 
#Posterior 
pos3<-beta_posterior(1,1,10,50) 
pos3 #11.0000000 41.0000000  0.2115385 
 
#gráfico 3 
 
plot(z,dbeta(z,1, 1),ylab="",xlab="",cex.axis=2,col="blue",type="l",lwd = 
5,ylim=c(0,11)) 
title(main=expression(paste("Sin conocimiento 
previo")),cex.main=2.1,xlab=expression(p[1.3]),cex.lab=3) 
lines(z,dbeta(z,9.8, 39.2),ylab="",col="green",type="l",lwd = 5,ylim=c(0,8)) 
lines(z,dbeta(z,pos3[1], pos3[2]), main="" ,col="red",type="l",lwd = 5) 
legend(0.45,8,nombres,pch=c(15,15,15),col=colores,cex=2) 
 
#Segundo estrato 
 
#a) p=0.2 n=35 
ab_pn(0.2,35)#6.8 27.2 
 
#b) p=0.2 (0.1,0.3) 
ab_pp(0.1,0.3)#12.6 50.4 (tamaño equivalente=63) 
 
#c) Sin conocimiento previo 
#a=1, b=1 
 
#Simulamos datos, p=0.1 
set.seed(1) 
a<-runif(30,0,1) 
x2<-rep(0,30) 
for(i in 1:30){ 
  if(a[i]<=0.15){x2[i]<-1}} 
 
x2<-factor(x2) 
summary(x2) 
#0 27 
#1 3 
 
#Despejamos a y b, p=0.1 n=30 
ab_pn(0.1,30) # 2.9 26.1 
 
#a) Previa 1 
 
#Posterior 
pos2.1<-beta_posterior(6.8, 27.2,3,30) 
pos2.1 #9.800000 54.200000  0.153125 
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#gráfico 1 
plot(z,dbeta(z,6.8, 27.2),ylab="",xlab="",cex.axis=2,col="blue",type="l",lwd = 
5,ylim=c(0,11)) 
title(main=expression("Conocimiento previo: p=0.2  
n=35"),cex.main=2.1,xlab=expression(p[2.1]),cex.lab=3) 
lines(z,dbeta(z,2.9, 26.1),ylab="",col="green",type="l",lwd = 5,ylim=c(0,8)) 
lines(z,dbeta(z,pos2.1[1], pos2.1[2]), main="" ,col="red",type="l",lwd = 5) 
legend(0.45,8,nombres,pch=c(15,15,15),col=colores,cex=2) 
 
#b) Previa 2 
 
#Posterior 
pos2.2<-beta_posterior(12.6, 50.4,3,30) 
pos2.2 #  15.6000000 77.4000000  0.1677419 
 
#gráfico 2 
plot(z,dbeta(z,12.6, 50.4),ylab="",xlab="",cex.axis=2,col="blue",type="l",lwd = 
5,ylim=c(0,11)) 
title(main=expression(paste("Conocimiento previo: ", 
IC^{95~'%'},"=(0.1,0.3)")),cex.main=2.1,xlab=expression(p[2.2]),cex.lab=3) 
lines(z,dbeta(z,2.9, 26.1),ylab="",col="green",type="l",lwd = 5,ylim=c(0,8)) 
lines(z,dbeta(z,pos2.2[1], pos2.2[2]), main="" ,col="red",type="l",lwd = 5) 
legend(0.45,8,nombres,pch=c(15,15,15),col=colores,cex=2) 
 
#c) Previa 3 
#Posterior 
pos2.3<-beta_posterior(1, 1,3,30) 
pos2.3 # 4.000 28.000  0.125 
 
#gráfico 3 
plot(z,dbeta(z,1, 1),ylab="",xlab="",cex.axis=2,col="blue",type="l",lwd = 
5,ylim=c(0,11)) 
title(main=expression(paste("Sin conocimiento 
previo")),cex.main=2.1,xlab=expression(p[2.3]),cex.lab=3) 
lines(z,dbeta(z,2.9, 26.1),ylab="",col="green",type="l",lwd = 5,ylim=c(0,8)) 
lines(z,dbeta(z,pos2.3[1], pos2.3[2]), main="" ,col="red",type="l",lwd = 5) 
legend(0.45,8,nombres,pch=c(15,15,15),col=colores,cex=2) 
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II. Eranskina 

#Anexo II 
 
#Incluimos la previa y el tamaño muestral equivalente 
 
datos15$p_previa14<-NA 
 
for(i in 1:dim(datos15)[1]){ 
  for(j in 1:dim(datos14)[1]){ 
    if(datos15$ESTR_DIRECTORIO[i]==datos14$ESTR_DIRECTORIO[j]){ 
      datos15$p_previa14[i]<-datos14$p_f[j] 
      datos15$n_previa14[i]<-datos14$n_f[j]} 
  }} 
 
for(i in 1:dim(datos15)[1]){ 
  if(is.na(datos15$n_previa14[i])){datos15$n_previa14[i]=3} 
  if(is.na(datos15$p_previa14[i])){datos15$p_previa14[i]=0.5} 
} 
 
#Calculamos parámetros a y b 
a<-rep(0,h_15) 
b<-rep(0,h_15) 
 
for(i in 1:h){ 
  a[i]<- datos15$p_previa14[i]*(datos15$n_previa14[i]-1) 
  b[i]<-datos15$n_previa14[i]-a[i]-1 
  if (a[i]<=0) a[i]<-0.01 
  if (b[i]<=0) b[i]<-0.01} 
 
y<-datos15$y 
n<-datos15$n 
N<-datos15$N 
 
data.previa<-list(y=y,n=n,N=N,h=h_15,a=a,b=b) 
 
par.p <- c("p_total","pi") 
 
inits<-function(){ 
  list(pi=runif(h,0,1))} 
 
#Cargamos librería 
library(R2WinBUGS) 
 
set.seed(1) 
bmbugs_previa <- bugs(data.previa,inits, par.p, "previa.txt", 
                      n.chains = 1, n.iter = 10000, n.burnin=1000, 
                      bugs.directory ="D:/DATOS/NGUTIEAR/Desktop/WinBUGS14/") 
 
print(bmbugs_previa,digits=4) 
 
 
#Simulaciones de cada estrato 
pi_post_previa_h<-matrix(0,h,1000) 
for(i in 1:h){ 
  pi_post_previa_h[i,]<-bmbugs_previa$sims.array[,1 ,paste("pi[",i,"]",sep="")]} 
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#Gipuzkoa 
 
p_total_previa_b<- bmbugs_previa$sims.array[,1 ,"p_total"] 
 
p_tot_previa_b<-mean(p_total_previa_b) 
p_tot_previa_b 
#  0.2659584 
 
l_previa_b<-quantile(p_total_previa_b, c(0.025)) 
l_previa_b 
#0.2464925    
 
u_previa_b<-quantile(p_total_previa_b, c(0.975)) 
u_previa_b 
#0.2845025   
 
#Por sectores A38 
 
datos15$ACTA38<-factor(datos15$ACTA38) 
 
a38<-datos15$ACTA38 
 
dominios<-list("1","2","3","4","5","6","7","8","9","10","11","12", 
               "13","14","15","16","17","18","19","20","21","22","23","24", 
               "25","26","27","28","29","30","31","32","33","34","35","36", 
               "37","38") 
 
d<-length(dominios) 
 
p_dom1_previa<-matrix(0,d,1000) 
p_dom1_med_previa<-rep(0,d) 
for(i in 1:d){ 
  t<-rep(0,1000) 
  tot<-0 
  for(j in 1:h){ 
    if (dominios[i]==a38[j]){ 
      t<-t+pi_post_previa_h[j,]*N[j] 
      tot<-tot+N[j] 
    } 
    p_dom1_previa[i,]<-t/tot 
    p_dom1_med_previa[i]<-mean(t/tot) }} 
 
 
names(p_dom1_med_previa)<-
list("1","2","3","4","5","6","7","8","9","10","11","12", 
                               
"13","14","15","16","17","18","19","20","21","22","23","24", 
                               
"25","26","27","28","29","30","31","32","33","34","35","36", 
                               "37","38") 
 
p_d1_previa<-matrix(0,length(na.omit(p_dom1_med_previa)),2) 
for(i in 1:length(na.omit(p_dom1_med_previa))){ 
  p_d1_previa[i,1]<-as.numeric(names(na.omit(p_dom1_med_previa)))[i] 
  p_d1_previa[i,2]<-na.omit(p_dom1_med_previa)[i]} 
 
p_d1_previa 
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#A38="02" 
p_A38_2_previa_b<-p_dom1_med_previa[2] 
p_A38_2_previa_b 
#0.00169441  
 
l_A38_2_previa_b<-quantile(p_dom1_previa[2,], c(0.025)) 
u_A38_2_previa_b<-quantile(p_dom1_previa[2,], c(0.975)) 
quantile(p_dom1_previa[2,], c(0.025,0.975)) 
#0.00000000 0.01596836  
 
#A38="03" 
p_A38_3_previa_b<-p_dom1_med_previa[3] 
p_A38_3_previa_b 
#0.3280667 
 
l_A38_3_previa_b<-quantile(p_dom1_previa[3,], c(0.025)) 
u_A38_3_previa_b<-quantile(p_dom1_previa[3,], c(0.975)) 
quantile(p_dom1_previa[3,], c(0.025,0.975)) 
#0.1990041 0.4694112  
 
#A38="04" 
p_A38_4_previa_b<-p_dom1_med_previa[4] 
p_A38_4_previa_b 
#0.240075 
 
l_A38_4_previa_b<-quantile(p_dom1_previa[4,], c(0.025)) 
u_A38_4_previa_b<-quantile(p_dom1_previa[4,], c(0.975)) 
quantile(p_dom1_previa[4,], c(0.025,0.975)) 
#0.1281434 0.3654042 
 
#A38="05" 
p_A38_5_previa_b<-p_dom1_med_previa[5] 
p_A38_5_previa_b 
#0.3814882  
 
l_A38_5_previa_b<-quantile(p_dom1_previa[5,], c(0.025)) 
u_A38_5_previa_b<-quantile(p_dom1_previa[5,], c(0.975)) 
quantile(p_dom1_previa[5,], c(0.025,0.975)) 
#0.2504197 0.5134477  
 
#A38="07" 
p_A38_7_previa_b<-p_dom1_med_previa[7] 
p_A38_7_previa_b 
#0.3585053  
 
l_A38_7_previa_b<-quantile(p_dom1_previa[7,], c(0.025)) 
u_A38_7_previa_b<-quantile(p_dom1_previa[7,], c(0.975)) 
quantile(p_dom1_previa[7,], c(0.025,0.975)) 
#0.2276541 0.5180853 
 
#A38="09" 
p_A38_9_previa_b<-p_dom1_med_previa[9] 
p_A38_9_previa_b 
#0.2173366 
 
l_A38_9_previa_b<-quantile(p_dom1_previa[9,], c(0.025)) 
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u_A38_9_previa_b<-quantile(p_dom1_previa[9,], c(0.975)) 
quantile(p_dom1_previa[9,], c(0.025,0.975)) 
#0.1321552 0.3167207  
 
#A38="10" 
p_A38_10_previa_b<-p_dom1_med_previa[10] 
p_A38_10_previa_b 
#0.3001016 
 
l_A38_10_previa_b<-quantile(p_dom1_previa[10,], c(0.025)) 
u_A38_10_previa_b<-quantile(p_dom1_previa[10,], c(0.975)) 
quantile(p_dom1_previa[10,], c(0.025,0.975)) 
#0.2131268 0.3986713  
 
#A38="11" 
p_A38_11_previa_b<-p_dom1_med_previa[11] 
p_A38_11_previa_b 
#0.4068358 
 
l_A38_11_previa_b<-quantile(p_dom1_previa[11,], c(0.025)) 
u_A38_11_previa_b<-quantile(p_dom1_previa[11,], c(0.975)) 
quantile(p_dom1_previa[11,], c(0.025,0.975)) 
#0.3138329 0.5084525 
 
#A38="13" 
p_A38_13_previa_b<-p_dom1_med_previa[13] 
p_A38_13_previa_b 
#0.3319086  
 
l_A38_13_previa_b<-quantile(p_dom1_previa[13,], c(0.025)) 
u_A38_13_previa_b<-quantile(p_dom1_previa[13,], c(0.975)) 
quantile(p_dom1_previa[13,], c(0.025,0.975)) 
#0.2410149 0.43596551 
 
#A38="14" 
p_A38_14_previa_b<-p_dom1_med_previa[14] 
p_A38_14_previa_b 
#0.3459527  
 
l_A38_14_previa_b<-quantile(p_dom1_previa[14,], c(0.025)) 
u_A38_14_previa_b<-quantile(p_dom1_previa[14,], c(0.975)) 
quantile(p_dom1_previa[14,], c(0.025,0.975)) 
#0.2207378 0.4830781  
 
#A38="15" 
p_A38_15_previa_b<-p_dom1_med_previa[15] 
p_A38_15_previa_b 
#0.3365971  
 
l_A38_15_previa_b<-quantile(p_dom1_previa[15,], c(0.025)) 
u_A38_15_previa_b<-quantile(p_dom1_previa[15,], c(0.975)) 
quantile(p_dom1_previa[15,], c(0.025,0.975)) 
#0.2222601 0.4636895  
 
#A38="16" 
p_A38_16_previa_b<-p_dom1_med_previa[16] 
p_A38_16_previa_b 
#0.1259951   
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l_A38_16_previa_b<-quantile(p_dom1_previa[16,], c(0.025)) 
u_A38_16_previa_b<-quantile(p_dom1_previa[16,], c(0.975)) 
quantile(p_dom1_previa[16,], c(0.025,0.975)) 
#0.0176104 0.3052162 
 
#A38="17" 
p_A38_17_previa_b<-p_dom1_med_previa[17] 
p_A38_17_previa_b 
#0.1172628  
 
l_A38_17_previa_b<-quantile(p_dom1_previa[17,], c(0.025)) 
u_A38_17_previa_b<-quantile(p_dom1_previa[17,], c(0.975)) 
quantile(p_dom1_previa[17,], c(0.025,0.975)) 
#0.04320774 0.22660154 
 
#A38="18" 
p_A38_18_previa_b<-p_dom1_med_previa[18] 
p_A38_18_previa_b 
#0.1628718 
 
l_A38_18_previa_b<-quantile(p_dom1_previa[18,], c(0.025)) 
u_A38_18_previa_b<-quantile(p_dom1_previa[18,], c(0.975)) 
quantile(p_dom1_previa[18,], c(0.025,0.975)) 
#0.1014900 0.2340487   
 
#A38="19" 
p_A38_19_previa_b<-p_dom1_med_previa[19] 
p_A38_19_previa_b 
#0.3163508 
 
l_A38_19_previa_b<-quantile(p_dom1_previa[19,], c(0.025)) 
u_A38_19_previa_b<-quantile(p_dom1_previa[19,], c(0.975)) 
quantile(p_dom1_previa[19,], c(0.025,0.975)) 
#0.2701332 0.3631196   
 
#A38="20" 
p_A38_20_previa_b<-p_dom1_med_previa[20] 
p_A38_20_previa_b 
#0.1378989  
 
l_A38_20_previa_b<-quantile(p_dom1_previa[20,], c(0.025)) 
u_A38_20_previa_b<-quantile(p_dom1_previa[20,], c(0.975)) 
quantile(p_dom1_previa[20,], c(0.025,0.975)) 
#0.08092351 0.21271029  
 
#A38="21" 
p_A38_21_previa_b<-p_dom1_med_previa[21] 
p_A38_21_previa_b 
#0.1499432  
 
l_A38_21_previa_b<-quantile(p_dom1_previa[21,], c(0.025)) 
u_A38_21_previa_b<-quantile(p_dom1_previa[21,], c(0.975)) 
quantile(p_dom1_previa[21,], c(0.025,0.975)) 
#0.1095624 0.2013698   
 
#A38="22" 
p_A38_22_previa_b<-p_dom1_med_previa[22] 
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p_A38_22_previa_b 
#0.4769936  
 
l_A38_22_previa_b<-quantile(p_dom1_previa[22,], c(0.025)) 
u_A38_22_previa_b<-quantile(p_dom1_previa[22,], c(0.975)) 
quantile(p_dom1_previa[22,], c(0.025,0.975)) 
#0.3978893 0.5464147 
 
#A38="25" 
p_A38_25_previa_b<-p_dom1_med_previa[25] 
p_A38_25_previa_b 
#0.1810702  
 
l_A38_25_previa_b<-quantile(p_dom1_previa[25,], c(0.025)) 
u_A38_25_previa_b<-quantile(p_dom1_previa[25,], c(0.975)) 
quantile(p_dom1_previa[25,], c(0.025,0.975)) 
#0.1174039 0.2537635  
 
#A38="26" 
p_A38_26_previa_b<-p_dom1_med_previa[26] 
p_A38_26_previa_b 
#0.2026248  
 
l_A38_26_previa_b<-quantile(p_dom1_previa[26,], c(0.025)) 
u_A38_26_previa_b<-quantile(p_dom1_previa[26,], c(0.975)) 
quantile(p_dom1_previa[26,], c(0.025,0.975)) 
#0.1174303 0.3137936  
 
#A38="27" 
p_A38_27_previa_b<-p_dom1_med_previa[27] 
p_A38_27_previa_b 
#0.3873074  
 
l_A38_27_previa_b<-quantile(p_dom1_previa[27,], c(0.025)) 
u_A38_27_previa_b<-quantile(p_dom1_previa[27,], c(0.975)) 
quantile(p_dom1_previa[27,], c(0.025,0.975)) 
#0.3262329 0.4522949  
 
#A38="29" 
p_A38_29_previa_b<-p_dom1_med_previa[29] 
p_A38_29_previa_b 
#0.222496  
 
l_A38_29_previa_b<-quantile(p_dom1_previa[29,], c(0.025)) 
u_A38_29_previa_b<-quantile(p_dom1_previa[29,], c(0.975)) 
quantile(p_dom1_previa[29,], c(0.025,0.975)) 
#0.1349709 0.3286571  
 
#A38="30" 
p_A38_30_previa_b<-p_dom1_med_previa[30] 
p_A38_30_previa_b 
#0.3744737  
 
l_A38_30_previa_b<-quantile(p_dom1_previa[30,], c(0.025)) 
u_A38_30_previa_b<-quantile(p_dom1_previa[30,], c(0.975)) 
quantile(p_dom1_previa[30,], c(0.025,0.975)) 
#0.2334885 0.5236972 
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#A38="31" 
p_A38_31_previa_b<-p_dom1_med_previa[31] 
p_A38_31_previa_b 
#0.1787776  
 
l_A38_31_previa_b<-quantile(p_dom1_previa[31,], c(0.025)) 
u_A38_31_previa_b<-quantile(p_dom1_previa[31,], c(0.975)) 
quantile(p_dom1_previa[31,], c(0.025,0.975)) 
#0.1006409 0.2836296 
 
#A38="32" 
p_A38_32_previa_b<-p_dom1_med_previa[32] 
p_A38_32_previa_b 
#0.3581569  
 
l_A38_32_previa_b<-quantile(p_dom1_previa[32,], c(0.025)) 
u_A38_32_previa_b<-quantile(p_dom1_previa[32,], c(0.975)) 
quantile(p_dom1_previa[32,], c(0.025,0.975)) 
#0.2809560 0.4493003 
 
#A38="33" 
p_A38_33_previa_b<-p_dom1_med_previa[33] 
p_A38_33_previa_b 
#0.342817  
 
l_A38_33_previa_b<-quantile(p_dom1_previa[33,], c(0.025)) 
u_A38_33_previa_b<-quantile(p_dom1_previa[33,], c(0.975)) 
quantile(p_dom1_previa[33,], c(0.025,0.975)) 
#0.2383233 0.4555771  
 
#A38="34" 
p_A38_34_previa_b<-p_dom1_med_previa[34] 
p_A38_34_previa_b 
#0.1927656  
 
l_A38_34_previa_b<-quantile(p_dom1_previa[34,], c(0.025)) 
u_A38_34_previa_b<-quantile(p_dom1_previa[34,], c(0.975)) 
quantile(p_dom1_previa[34,], c(0.025,0.975)) 
#0.1515279 0.2396318   
 
#previa.txt 
model{ 
 
#likelihood 
for(i in 1:h){ 
y[i]~dbin(pi[i],n[i])} 
 
#priors 
for(i in 1:h){ 
pi[i]~dbeta(a[i],b[i])} 
 
#p_total 
for(i in 1:h){ 
m[i]<-pi[i]*N[i]} 
 
p_total<-sum(m[1:h])/sum(N[1:h])}
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