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Aurkezpena

Berriki, Estatistika Bayesiarraren jakinmina Estatistika Ofizialean modu batez nahiko gehitu da.
Ildo horretan, Eustat-ek XXVIII Estatistika Nazioarteko Mintegia antolatu zuen izenburu
honekin “Calibrated Bayesian Inference for Sample Surveys” (Kalibrazio Bayesiarraren bidezko
inferentzia laginketa-inkestetan). Mintegia Roderik Littlek eman zuen, Michigan
Unibertsitateko Bioestatistika irakaslea eta Richard D. Remington deritzon katedraduna (EEBB).

Eustat-eko Bekadun batek eremu horretan egindako lkerketa-lana zabaltzea da argitalpen
honen helburua. Dokumentu honek hainbat kapitulu ditu: oinarri teoriko batekin hasiko da,
adibide praktikoekin jarraituta, gero aplikazio batekin jarraitzen da non Eustat-eko

Informazioaren gizartearen inkesta enpresetan (ESIE) erabiltzen den eredu frekuentista eta
eredu bayesiar baten emaitzak alderatzeko eta azkenik, lortutako emaitzak erakusten dira.

Vitoria-Gasteiz, 2017ko martxoak
Josu Iradi Arrieta

EUSTAT-eko Zuzendari Nagusia
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Atarikoa

Euskal Estatistika Erakundeak (EUSTAT) 2015. urtean estatistika- eta matematika-
metodologietan prestatzeko eta ikertzeko emandako bekari esker inferentzia bayestarraren
inguruan egin den lanaren emaitza da Koaderno Tekniko honetan bildutakoa.

Dokumentu hau honako kapitulu hauetan banatuta dago:

Lehen kapituluan, inferentzia bayestarraren sarrera moduko bat egiten da, eta joera berri
honen eta inferentzia frekuentistaren ezaugarri nagusiak berrikusten dira, haien arteko
desberdintasunak azpimarratuta.

Bigarren, hirugarren, laugarren eta bosgarren kapituluetan, hurrenez hurren, proportzio bat,
batezbesteko normal bat, batezbestekoen diferentzia eta erregresio lineala kalkulatzeko
lantzen da inferentzia bayestarra. Halaber, adibide batzuk ematen dira azaldutako kontzeptu
teorikoak hobeto ulertzeko.

Seigarren kapituluan, datu simulatuekin egindako bi adibide ematen dira, eta inferentzia
bayestarra Estatistika Ofizialean aplikatzeko aukeraren inguruko lehen ondorioak lortzen dira.

Zazpigarren kapituluan, ikusitako kontzeptuei lotutako aplikazio bat azaltzen da. Kapitulu
horretan, EUSTATek egindako Informazioaren Gizarteari buruzko Inkesta — Enpresak (IGIE)
erabiltzen da, eredu frekuentista batetik eta eredu bayestar batetik abiatuta merkataritza
elektronikoaren estimazioak konparatzeko. Aplikazio horrekin lortutako emaitzak poster-saio
baten bidez aurkeztu ziren Toledon, 2016ko irailaren 5etik 7ra bitarte egindako Estatistika eta
Ikerketa Operatiboaren eta Estatistika Publikoko X. Jardunaldien XXXVI. Biltzar Nazionalean
(SEIO 2016).

Azkenik, 6. eta 7. kapituluen alde praktikoa egiteko R lengoaian inplementatutako kodearen
zati bat agertzen duten bi eranskin daude.

Halaber, atariko hau baliatu nahi dut Eustateko Metodologia, Berrikuntza eta 1+Gko Arloa
osatzen duten guztien babesa eskertzeko, eta, bereziki, Anjeles lztuetari eskerrak eman nahi
dizkiot une oro agertutako babes eta konfiantza irmoagatik. Era berean, Eustateko langile
guztien adeitasuna eskertu nahi dut. Izan ere, haiei esker, lan-munduarekiko lehen kontaktu
hau esperientzia atsegina eta gogobetegarria izan da, eta betiko iraungo du nire oroimenean.
Azkenik, eskerrak eman nahi dizkiet nire familiari eta Gianfeliceri, hartutako erabaki
bakoitzean lagundu izanagatik eta une oro nire ondoan egon izanagatik.

GAKO-HITZAK: inferentzia bayestarra, Bayes, inferentzia frekuentista.
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1. Kapitulua

1. Estatistika frekuentista vs bayestarra

1.1 Sarrera

"Probabilitate” kontzeptutik abiatuta, bi ikuspegi planteatzen dira analisi estatistikoan:
estatistika frekuentista eta estatistika bayestarra. Estatistika bayestarra oraingo kontua dela
dirudi, baina urte askotako historia dauka dagoeneko. Izan ere, Bayesen teorema 1763. urtean
formulatu zuen Thomas Bayesek. Dena dela, urte asko behar izan ziren paradigma estatistiko
horrek eskaintzen dituen abantailen inguruko kontzientzia zientifikoa finkatzeko. Horren
arrazoia software bayestarrek izan duten bilakaera izan daiteke. Izan ere, orain konplexutasun
handiko problemak ebatz ditzakete, baina garai batean erabat ezinezkoa zitzaien.

1.2 Estatistika frekuentista

Ikuspegi frekuentista batetik, probabilitatea esperimentazioari lotuta definitzen da, eta beti
zirkunstantzia beretan errepikatutako proba berdin eta independenteen sekuentzia infinitu
bateko maiztasun erlatiboaren muga dela esaten da. Adibidez, esperimentu bat aldi kopuru
infinitu batean errepikatzen bada eta 1000 alditik 350etan emaitza jakin bat gertatu dela
egiaztatzen bada, frekuentista batek esango luke emaitza horren probabilitatea % 35 dela. Hau
da, A gertaera ezezagun baten P probabilitatea, P(A), gertaera horren maiztasunaren arabera
definitzen da, aurreko behaketetan oinarrituta. Definizio horren arabera, frekuentista batek
dio gertaera bakoitzari bere egiazko balio bat lortzeko probabilitate bat lotu dakiokeela.
Adibidez, Erresuma Batuan jaioberri guztien % 50,9 neskak badira, eta kontuan hartuta
A="ausaz hautatutako ume bat neska da”, P(A)=0,509 izango da.

Beraz, hurbilketa klasikoa gauzen probabilitate "erreala" aztertzean datza, eta esperimentu
multzo batekin egindako neurketa bat azpiko probabilitate errealera zer neurritan hurbiltzen
den finkatzen saiatzen da. Hori dela-eta, parametroak balio finkoak baina ezezagunak dira
frekuentista batentzat, eta datuak behatzeko probabilitatea maximizatzen duten parametroen
balioen aukeraketan oinarritzen da estimazioa. Hortaz, ausazko aldagai bati edo gertaera bati
lotutako probabilitateaz hitz egin dezakegu, baina inoiz ez parametro, hipotesi, eredu edo falta
den behaketa bati lotutako probabilitateaz.

1.2.1 Inferentzia

Populazio baten lagin batetik abiatuta populazio horren inguruko ondorioak ateratzeko aukera
ematen diguten estatistika-tekniken multzoa da inferentzia estatistikoa. Ikuspegi
frekuentistaren arabera, inferentzia estatistikoko tekniken helburua intereseko parametroari
buruzko bi hipotesi kontrastatzea da. Hipotesiak honako hauek dira: H, hipotesi nulua eta H;
hipotesi alternatiboa. H, hipotesia era arbitrarioan finkatutako p-balio baten arabera baztertu
edo onartuko dugu (p<0.05 normalean). Erabakia hartzeko garaian, bi errore mota egin
ditzakegu. Hipotesi nulua bazter dezakegu, hipotesi hori egiazkoa izanik ere (I. motako errorea
edo a errorea), edota hipotesi alternatiboa bazter dezakegu, egiazkoa izanik ere (II. motako
errorea edo 8 errorea). Il motako errorearen (1 - [3) probabilitate osagarria kontrastearen
ahalmena edo potentzia izenekoa da. Horrela, beraz, I. motako errore bat onartzeko
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prestasuna finkatzen dugu. Hala ere, p-ren ezaugarri gisa azpimarra dezakegu bere balioa
laginaren tamainaren araberakoa dela. Hau da, lagina zenbat eta handiagoa izan, orduan eta
handiagoa izango da konparatzen diren taldeen artean alde esanguratsuak aurkitzeko
probabilitatea.

1.2.2 Konfiantza-tarteak

Inferentzia frekuentistan, konfiantza-tarteak (KT) ere oso maiz erabiltzen dira. ICq50, bat aldien
% 95etan asmatzen duen balio-heina da. Hau da, laginketa askotan errepikatuko balitz,
prozedura bera aplikatuko balitz eta konfiantza-tarteak % 95ean kalkulatuko balira (formula
ezagunen arabera), 100 tartetik 95etan kalkulatzen ari den egiazko parametroa egongo
litzateke, eta a=0,05 dela finkatuko litzateke. Hortaz, konfiantza-tarte bakarra kalkulatzen
bada, tarte hori "arrakastatsuetako" bat delako "konfiantza" baino ezin da eduki. Konfiantza-
tarteak egiteko garaian, estimazioak eta errore estandarrak esku hartzen dute. Errore
estandarra gure estimazioan onartzen dugun errore-maila da, eta laginaren tamainaren
alderantziz proportzionala da. Hortaz, lagina zenbat eta handiagoa izan, orduan eta zehatzagoa
izango da estimazioa. Horrela, beraz, H, kontrastatzea gure konfiantza-tarteak parametroa
biltzen duela egiaztatzea da.

1.2.3 Adibidea: proportzioen konparazioa hainbat egoeratan, ikuspegi frekuentista batetik
abiatuta

Demagun, adibidez, gaixotasun bat duten pazienteak tratamendu konbinatu bat jasotzen
dutenean tratamendu tradizionala erabiltzen dutenean baino bizkorrago osatzen diren
baloratzeko saiakuntza kliniko bat egiten dela. Ziur samar dakigu pazienteen % 60 baino ez
direla azken baliabide terapeutikoarekin osatzen. Bestalde, ikerketa-taldeak bibliografian eta
eguneroko lanean oinarrituta dituen arrazoi teorikoak eta zantzu enpirikoak kontuan hartuta,
baikortasun handi samarrarekin pentsa daiteke tratamendu konbinatua tratamendu sinplea
baino eraginkorragoa dela. Demagun n = 80 dela, tratamendu konbinatua 40 pertsonari eta
tratamendu tradizionala beste 40ri aplikatzen diegula, eta bost egunen ondoren tratamendu
konbinatua jaso duten pazienteen % 75ek (m, = 0,75) nabarmen egin dutela hobera, eta
tratamendu tradizionala jaso dutenen kasuan, berriz, osatu direnen tasa % 60 (m; = 0,60)
dela.

BAI EZ Guztira
K 30 10 40
T 24 16 40
Guztira 54 26 80

Datuak lortu ondoren (m., m;y mq = M. — ), honako hipotesi honi lotutako probabilitatea
kalkulatzen da: Hy: mq < 0. Horretarako, XZ proba aplikatu, eta Xzobs = 2,05 dela eta
dagokion p-balioa 0,076 dela lortuko dugu. Balio hori behar bezain txikia ez denez gero, ez
dugu ebidentzia nahikoa tratamendu konbinatuak ondorio nabarmen desberdinak dituela
ondorioztatzeko.

Demagun esperimentua berriz egiten dela, baina oraingoan n ez dela 40 paziente talde
bakoitzean, 200 baizik. Honako emaitza hauek lortuko lirateke:
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BAI EZ ~ Guztira

K 150 50 200
T 120 80 200
Guztira 270 130 400

Osatzen diren pazienteen tasak m. = 0,75 eta m; = 0,6 dira berriz, eta, beraz, diferentzia
mq = 0,15 da. Kasu horretan, x ? probarekin x ?_ - = 10,26 lortuko dugu, eta, beraz, p-balioa
0,00068 izango da. Beraz, tratamendu konbinatua eraginkorragoa dela onartuko dugu,
% 95eko konfiantzarekin (baita % 99ko konfiantzarekin ere). Horrek esan nahi du laginaren
tamainak eragin handia duela p-balioan.

Azkenik, demagun orain bigarren esperimentuaren baldintza beretan egoera alderantzizkoa
dela. Honako emaitza hauek lortuko genituzke:

BAI EZ Guztira
K 103 97 200
T 120 80 200
Guztira 223 117 400

Lortuko genituzkeen estimazioak m. = 0,52 eta m = 0,60 izango lirateke (mq = m; — T
izanik). H, hipotesia (mg = 0) egiazkoa dela suposatuta, hipotesi-probak esaten digu
Xzobs = 3,29 eta p-balioa=0,0349 dela. Kasu horretan, H, hipotesia baztertuko dugu, baina
kontrako zentzuan, hau da, tratamendu tradizionala konbinatua baino eraginkorragoa dela
ondorioztatuko dugu. Ondorio hori ez dator bat aldez aurretiko ezagutzekin eta

esperimentuaren bidez bilatzen zen emaitzarekin.

1.3 Estatistika bayestarra

Maiz egiten dira honelako galderak: zenbatekoa da ikasle batek matematikako azterketa
gainditzeko probabilitatea? Erantzun bat emateko, inork ez luke beharrezkotzat hartuko
ikasleak azterketa 1.000 aldiz egitea, era horretan zenbat aldiz gainditu duen zenbatzeko eta
arrakasten ehunekoa kalkulatu ahal izateko. Halaber, ohikoa izaten da "oso handia da
Bartzelonak partidua irabazteko probabilitatea” entzutea edota mediku batek paziente jakin
bat onik ateratzeko probabilitatea txikia dela esatea. Horrelako baieztapenek ez dute zentzurik
esparru frekuentistan, ekintza horiek ezin izango baititugu errepikatu aldi askotan eta
baldintza beretan. Lagunarteko hizkeran, berriz, askotan erabiltzen dira, eta zeregin erreal bat
betetzen dute erabakiak hartzeko garaian.

Metodo bayestarrak, aldiz, ebidentzia berrietan oinarrituta iragarpenak hobetzeko ideian
oinarrituta daude. Ikuspegi bayestarrari jarraikiz, probabilitatea ziurgabetasun-mailaren neurri
bat da. Bayestar batentzat, iragarpen bat egiteko dugun ezagutza-maila neurtzen duen
adierazpen matematikoa da probabilitatea. Beraz, joera bayestarraren arabera

, zorrotz mintzatuta ez da zuzena “P ekintza bat gertatzeko probabilitatea % 30 dela iragartzen
dut" esatea. Horren ordez, honako hau adierazi beharko litzateke: "orain daukadan ezagutzan
oinarrituta, % 30ean ziur naiz P gertatuko dela”.

Bestalde, bayestarrek ausazko aldagai gisa interpretatzen dituzte parametroak, eta ikuspegi
honetan funtsezko tresna den Bayesen Teoreman oinarrituta aztertzen da aldagai horien
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probabilitate-banaketa. Probabilitate bayestarraren arabera, oinarrizkoagoa da baldintzazko
probabilitate bat baterako probabilitate bat baino. Beraz, P(A|B) definitu nahi da P(A, B)
baterako probabilitatea kontuan hartu gabe.

1.3.1 Inferentzia bayestarraren lehenengo urratsak

P(A,B)=P(A|B)*P (B) eta, simetriaz, P(A, B)=P (B|A)*P(A) kontuan hartuta, Bayesen
formula ezaguna lortzen da bi adierazpenak batuta:

bl = I <P
P(B)

Problema bayestar bat formulatu nahi izanez gero, 6 deituko diogu, adibidez, kalkulatu nahi
dugun parametroari. Ondoren, parametroaren probabilitate-banaketa finkatu behar da
eskuragarri dagoen informazioarekin; a priori probabilitate deitzen zaio horri: P(8). Oso
garrantzitsua da aldez aurretiko informazioa datuak kontuan hartu gabe ezartzea. Estatistika
bayestarraren aurkako kritika nagusiak puntu horrengatik jaso dira. Izan ere, objektibotasuna
galtzen da, eta, beti esan izan denez, zientziak objektiboa izan behar du. Efektu hori
murrizteko, a priori informazioa kuantifikatzeko garaian metodo bakar batera ez mugatzea eta
kasu bakoitzean ondorioak nola aldatzen diren egiaztatzea gomendatzen dute egile batzuek.
"Sentsibilitate-analisi" deitzen zaio horri. Edonola ere, a priori informazioa nahikoa ez bada eta
intuizio pertsonalak alde batera utzi nahi badira, informaziozkoa ez den banaketa bat esleituko
da, aurrerago ikusiko dugunez.

Ikuspegi bayestarraren ezaugarri bereizgarri bat zera da, lagin behagarriaren tamaina oso
handia denean, aukeratzen den a priori banaketak oso garrantzi txikia izan ohi duela. Horrela,
beraz, ikuspegi bayestarraren baliagarritasunik handiena laginen tamainak oso handiak ez
direnean lortzen da.

Bigarrenik, gure azterketan behatutako datuek ematen duten informazioa kuantifikatu beharra
dago, hots, egiantza: Lp(0). Azkenik, a posteriori probabilitate-funtzioa kalkulatzen da:
P(0|datos). Hau da, zenbateko probabilitatea duten © parametroaren balioek gure datuak
ikusi ondoren. Ondorengo banaketa lortzeko, a priori informazioa eta datuen egiantza
konbinatzen dira. Hortaz, P(6|D) « Lp(0) * P(0), non o sinboloak proportzionaltasuna
adierazten duen.

1.3.2 Aplikazioa proba sekuentzialetan

Paradigma bayestarra, beraz, ikaskuntza efektuari lotuta dago. Horren arabera, prozedura
dinamiko bati lotuta dago ezagutza. Datu berriak eskuratzean, gure aldez aurretiko ezagutzak
datu berriak erantsiz eguneratzeko aukera eskaintzen digu Bayesen teoremak. Horretan
oinarrituta, aldez aurretiko informazio berri bihurtzen dira. Hau da, lehenik eta behin, D; datu
multzoa behatzen da:

P(0]|D,) LD1(9) * P(0).
Ondoren, D, multzo berria behatu behar da:

P(6]Dy, D) o« Lp, () * P(8]Dy).
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Beraz, esan daiteke metodo bayestarrak aproposak direla proba sekuentzialak aztertzeko.

Adibidez, demagun aseguru-konpainia batek, urtero bezala, bere hiru filialetako bakoitzak (Fi;,
Fi, eta Fi;) kobratu beharreko fakturen ikuskapena egin nahi duela. Aurreko ikuskapenetatik
dakigunez, fakturen % 20 Fi; filialarenak, % 30 Fi, filialarenak eta % 50 Fi; filialarenak dira.
Demagun, halaber, Fi; filialaren fakturen % 1, Fi, filialaren fakturen % 2 eta Fi; filialaren
fakturen % 3 akastunak direla. Demagun orain egoitza nagusian faktura guztiak jasotzen direla
eta bertan ez daudela batere pozik Fis filialeko zuzendariarekin. Fakturen bolumena oso
handia denez gero, multzo bat ausaz hautatzea erabaki da. Demagun ausaz bat hautatzen
dugula eta akastuna dela. Faktura hori Fi; filialekoa izateko probabilitatea % 50etik gorakoa
bada, zuzendaria kendu egingo dute kargutik. Helburua hirugarren filialeko zuzendaria kargutik
kenduko duten ala ez iragartzea da.

Honako hauek definituko ditugu: F;="Hautatutako faktura Fi; filialekoa da”, i=1,2,3 eta
D="Hautatutako faktura akastuna da”. Asmoa P(F;|D) kalkulatzea da, eta, horretarako,
Bayesen teorema erabiliko dugu honako probabilitate hauekin:

P(F;): faktura Fi; filialekoa izateko a priori edo aldez aurretiko probabilitatea da; F; filialaren
probabilitatea da, faktura akastuna den ala ez jakin aurretik.

P(F;|D): a posteriori edo ondorengo probabilitatea; F5 filialaren probabilitatea da, faktura
akastuna dela jakin ondoren. Hau da, Bayesen teoremak hasierako probabilitateak emango
dizkigu, behatutako datuekin berrikusiak.

P(D|F3): D gertaerak (hautatutako faktura akastuna da) duen egiantza, faktura hirugarren
filialekoa dela jakinik. Ikusi dugunez, honako notazio hau erabil daiteke:

P(F;|D) o Lp(F;) * P(F;).

Adibide honetan, honako hau dugu: P(F,) = 0,2, P(F,) = 0,3y P(F;) = 0,5 eta P(D|F;) =
0,01, P(D|F,) = 0,02 y P(D|F;) = 0,03. Hortaz,

P(D) = P(D[Fy) * P(Fy) + P(D|F3) * P(F3) + P(D|F3) * P(F3) =
=0,01%0,2+0,02%0,3+0,03%0,5=0,023.

Eta
P(D|F,) *P(F;) 0,01+%0,2
P(F,|D) = ;(D) L= o = 0087,
P(D|F,) *P(F,) 0,02 0,3
P(F,|D) = ;(D) CEAS. e = 0,261
P(D|F;) *P(F;) 0,03%0,5
P(F;|D) = ;(D) S Tog5 = 0652

Hau da, Fi; filialeko zuzendaria kargutik kenduko dute.

Demagun orain bigarren faktura bat aztertu nahi dugula eta hura ere akastuna dela.
Hirugarren filialeko zuzendariaren egoera aztertu behar da berriz.

A priori probabilitate gisa lehen fasean a posteriori gisa lortutakoak erabiliz gero, honako hau
izango dugu:

ESTATISTIKA FREKUENTISTA VS BAYESTARRA 13

2 Eustat



P(F;|D) = 0,087; P(F,|D) = 0,261; P(F3|D) = 0,652;
D,:="bigarren fasean hautatutako faktura akastuna da" izanik:

P(D;) = P(D,|F;) = P(F{|D) + P(D,|F;) * P(F,|D) + P(D,|F3) = P(F3|D) =
= 0,010,087+ 0,020,261+ 0,03 0,652 = 0,02565.

Eta

P(D,|F,) *P(F;|D) 0,01 * 0,087

P(F;|D;) = P(D;) Y 0,034.
_ P(D,|F;) *P(F,|D) 0,02%0,261 _

P(F,|Dy) = P(D;) Y 0,2035.

P(B,|D3 ) * P(F5|D) 0,03 % 0,652
P(F.|D,) = = = 0,7625.
(F3[D2) P(D,) 0,02565 0.7625

Horrela, beraz, egoerak okerrera egin du hirugarren filialeko zuzendariarentzat, faktura bere
filialekoa izateko probabilitatea 0,7625ra igo baita.

1.3.3 Sinesgarritasun-tarteak

Inferentzia bayestarrean, sinesgarritasun-tarteak erabiltzen dira konfiantza-tarteen ordez.
Bayestarrek a posteriori lortzen den dentsitate-funtzioa adierazten duen kurba hartzen dute
kontuan, eta kurba horren azpiko azalera X eta Y balioen artean % (1-a) bada, egiazko balioa
probabilitate handiarekin (adibidez % 95ekoarekin, baldin eta a=0,05 bada) X eta Y balioen
artean dagoela esan daiteke. Kasu horretan, (X, Y) balioek % 95eko sinesgarritasun-tartea edo
konfiantza-tarte bayestar bat osatzen dutela esaten da. Nolanahi ere, ikuspegi frekuentista
batetik eta ikuspegi bayestar batetik emaitza berdinak lor badaitezke ere, emaitza horien
interpretazioa desberdina izango da beti. Adibidez, a priori banaketa finkatzeko garaian
banaketa hori erabiltzeko behar adinako ebidentziarik ez dugula erabaki badugu, eta, beraz, a
priori banaketa gisa banaketa uniformea finkatzen badugu, lortuko ditugun konfiantza-tarteak
berdinak izango dira zifrari dagokionez. lkusi dugunez, berriz, esanahia oso desberdina izango
da.

1.3.4 Adibidea: proportzioen konparazioa hainbat egoeratan, ikuspegi bayestar batetik
abiatuta

Bestalde, tratamendu konbinatuaren eta tratamendu tradizionalaren arteko aldea
esanguratsua zen ala ez aztertu dugun 1.2.3 atalera itzuliz, . eta . proportzioei buruzko
ezagutza handiagoa lortu nahi dugu metodo bayestarrak erabiliz. Bi proportzioak [0,1] tartean
dauden balio jarraituak dira, eta balio horien balio zehatza zenbatekoa den ez badakigu ere,
badugu intuizio bat, eta etekinik handiena atera behar diogu. lkusi dugunez, gure hasierako
ideiak proportzio bakoitzerako probabilitateen banaketa baten bidez adieraztean datza lehen
urratsa. Aurreko azterketen ondorioz, zantzu handiak genituen tratamendu konbinatua
tratamendu tradizionala baino eraginkorragoa zela pentsatzeko. Hori dela-eta, a priori
probabilitate gisa pentsa daiteke T, balioa seguruenik 0,4tik 0,8rako tartean dagoela, 0,6
inguruko balioa duela eta puntu horretatik urruntzean probabilitatea berehala murrizten dela.
T proportzioari dagokionez, 0,8 baliotik hurbil dagoela eta (0,7-0,9) tartetik kanpo egoteko
probabilitatea urria dela pentsatzen dugu. Proportzio bat denez gero, 2. kapituluan ikusiko
dugunez a priori dentsitate baten ohiko forma a eta b parametroen mendeko beta banaketa
batena da. Beta dentsitatearen funtzioa honako honen proportzionala da: m* (1 —m)?~1.
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T, proportzioaren kasuan, a priori beta banaketa a = 72 eta b = 18 parametroak dituena izan
daiteke, eta m; proportzioaren kasuan, berriz, a = 57 eta b = 38 parametroak dituena.
Ondorengo irudian, hautatutako a priori dentsitatearen funtzioak daude adierazita.

Osatutako pazienteen proportzioaren a priori banaketak

Kombinatua
Tradizionala

0.0 0.2 04

Bistakoa da a priori banaketak beste modu batean ere aukeratu zitezkeela, baina, guztiz
bestelako a priori informazioa edukitzearen kasuan izan ezik, emaitzak ez dira oso desberdinak
izango.

Hurrengo urratsa datuak behatzean datza, eta a posteriori banaketak lortzea izango da
helburua. Horretarako, Bayesen teorema erabiliko da. Egiazta daiteke beta(a,b) banaketa
baten eguneratzea (e arrakastak eta f porrotak adierazten dituen binomialaren bidez)
beta(a*b*) banaketa bat dela, a* = a + e eta b* = b + f izanik. Lehen esperimenturako, eta
lehen taulan agertutako datuak kontuan hartuta, m. eta m; proportzioetarako a posteriori
banaketak B, (102,28) eta B; (81,54) izango lirateke, hurrenez hurren.

Gure helburua tratamenduen proportzioek duten diferentziaren (mg = m. — m; ) banaketa
aztertzea da; 4. kapituluan sakonean aztertuko dugunez, banaketa normal bat izango da —
N(m' 4, (s"¢)?)= non

* *
_ ac _ at (S,d)z —
a;+b; a;+b;

ache a;b;
+ .
(a; +b2)?(az +b;+1)  (af +b))?(a; +b; +1)

14

myg

R softwarea erabiliz, esperimentu bakoitzaren diferentziaren banaketak honako hauek dira:

ESTATISTIKA FREKUENTISTA VS BAYESTARRA 15

2 Eustat



Osatutako pazienteen proportzioetan dagoen
diferentziaren a posteriori banaketak

1. esp.
\ - : 2. esp.

f \ — 3. esp.

Lehen esperimentuaren banaketari erreparatzen badiogu, diferentziaren eremurik
probableena 0,18 balioaren ingurukoa dela ikusiko dugu. Gogora dezagun ikuspegi
frekuentistaren barruan ikertzaileak ezin zuela ezer ondorioztatu, XZ testa egin ondoren
tratamendu konbinatua hobea zela esateko lagin-ebidentzia nahikoa ez zegoela baino ezin
baitzuen baieztatu. lkuspegi bayestarrak, aldiz, baieztapen zehatzak eta zentzuzkoak egiteko
aukera ematen duten probabilitateak zenbatzea ahalbidetzen du. Kasu honetan, adibidez,
adierazitako tratamenduekin sendatzeko proportzioen arteko diferentzia gutxienez % 10
izateko probabilitatea % 93,7 da. Hau da, esan daiteke ia ziurra dela tratamendu konbinatua
eraginkorragoa dela.

Bigarren esperimentuko datuekin lortutako kurbak agerian uzten duenez, laginaren tamainak
analisi bayestarrean duen eragina ez da ikuspegi frekuentistan duena bezain handia. Kasu
honetan, laginaren tamaina aurreko kasuan baino askoz handiagoa bada ere, ateratzen dugun
ondorioa antzeko samarra da. lzan ere, sendatzeko proportzioen arteko diferentzia 0,17 da
kasu honetan, eta 0,18 aurrekoan. Oraingoan, kurba estuagoa da, eta, beraz, laginaren
tamaina horrekin diferentziaren portaera posiblearen inguruan lortzen den ideia zehatzagoa
da. Hortaz, esan dezakegu tratamendu konbinatuaren balioa balio tradizionala baino gutxienez
% 10 handiagoa izateko probabilitatea % 95,85 dela.

Azkenik, hirugarren esperimentuan, lortutako emaitzak ez datoz bat ikertzaileak aldez aurretik
uste zuenarekin. Irudian ikus daitekeenez, tratamenduen arteko diferentzia zero ingurukoa da.
Kontraste frekuentistaren arabera, eta % 95eko konfiantzarekin, tratamendu tradizionala
eraginkorragoa zela onartzen zen. lkuspegi bayestarraren arabera, berriz, tratamendu
tradizionalarekin osatzen direnen ehunekoa % 10etik gorakoa izateko probabilitatea ia
mespretxagarria da, eta osatzen direnen ehunekoak Oren desberdinak gehienez ere % 5ean
izateko probabilitatea % 87,53ra iristen da. Kasu horretan, ikertzaileak egindako a priori
probabilitateak bereziki erakargarriak dira: emaitza enpirikoa bere aurreko ezagutzen eta
esperientzien guztiz kontrakoa bada ere, lortzen den ondorioa bitartekoa da eta ez du laginean
lortutako emaitzak soilik ordezten.

Hortaz, ondoriozta dezakegunez, metodo frekuentistek askotan ematen dizkigutenak baino
ondorio intuitiboagoak eta zentzu komunari lotuagoak lor ditzakegu metodo bayestarrekin. Eta
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metodo klasikoak aplikatzea askoz errazagoa bada ere, azterketa egin aurreko ikuspuntuak edo
usteak txertatzeko aukera izatea oso erakargarria da, oso prozesu naturala eta giza
arrazoibidearen antzekoa baita.

1.4 Paradigma bakoitzaren ezaugarri nagusien laburpena

Kapitulu hau amaitzeko eta lehen kontzeptuak finkatzeko, ikuspegi bakoitza definitzen duten
ezaugarri garrantzitsuak azalduko ditugu orain.

1.4.1 Estatistika frekuentistaren ezaugarriak
e |bilbide luzea du egina, eta prozedura eta emaitza onak eskaintzen ditu.
e Erraz aplikatzen da konputazionalki.

e Probabilitatea zirkunstantzia beretan errepikatutako proba berdin eta independenteen
sekuentzia infinitu bateko maiztasun erlatiboaren muga dela esaten da.

e Gertaera bakoitzari bere egiazko balio bat lotzeko probabilitate bat eman dakioke.
e Parametroak finkoak baina ezezagunak dira.

e Estimazioa, nolanahi ere, datuak behatzeko probabilitatea maximizatzen duten
parametroen balioen aukeraketan oinarrituta dago.

e Egiantz handienaren edo karratu txikienen metodoa ohikoa izaten da.
e Inferentzia hipotesi bat a bat finkatuz kontrastatzean datza.

e H, onartzen da, baldin eta P(datuak|H,)>a bada.

e H, onartzen da, baldin eta P(datuak|Hg)<a bada.

e P-balioa gutxienez benetan lortu dena bezain muturrekoa izango den emaitza bat lortzeko
probabilitatea da, hipotesi nulua egiazkoa dela suposatuta.

e Laginaren tamainak ez du eraginik p-balioan.

e Tamaina bereko hainbat lagin ateratzen badira eta lagin bakoitzaren % 95eko konfiantza-
tarteak kalkulatzen badira, tarte guztien % 95ek zenbatesten ari den parametroa edukiko
dute.

e Aldez aurretiko ezagutzak ez dira kontuan hartzen.

1.4.2 Estatistika bayestarraren ezaugarriak

e Oso ikaskuntza-prozesu naturala da, giza arrazoibidearen antzekoa, eta ondorio
intuitiboagoak ateratzeko aukera ematen du.

e Konputazio-denbora gehiago eta algoritmo konplexuagoak behar dira.
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e Oso erabilgarria laginen tamaina oso handia ez denean.
e Behatutako ebidentzia berrietatik abiatuta iragarpenak hobetzea da helburua.
e Probabilitatea ziurgabetasun-mailaren neurritzat hartzen da.

e Parametroak ausazko aldagai gisa interpretatzen dira, eta Bayesen teoreman oinarrituta
aztertzen da aldagai horien probabilitate-banaketa.

e Aldez aurretiko informazioa erabilgarria da, baina garrantzitsua da aldez aurretiko banaketa
behatutako datuak kontuan hartu gabe ezartzea.

e A priori daukagun informazioa kuantifikatzeko eta ondorioak konparatzeko hainbat metodo
erabiltzea gomendatzen da, objektibotasuna gal ez dadin.

e Laginaren tamaina oso handia denean, a priori banaketak oso garrantzi txikia izan ohi du.
e Egokia da proba sekuentzialak egiteko.

e 9 95eko probabilitatea dago sinesgarritasun-tarteak edo konfiantza-tarteak parametroa
edukitzeko.
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2. Kapitulua

2. Proportzio baterako inferentzia bayestarra

2.1 Sarrera

Inferentzian gehien agertzen diren arazoetako bat m populazio-proportzio baten balio ezezaguna
zenbatestea da. Demagun populazioaren ausazko lagin bat dugula, ¥'n saiakuntza independenteren
sekuentzia bateko arrakasta kopurua dela eta erantzun-aldagaia dikotomikoa dela, hau da, gehienez
ere bi balio har ditzakeela. Horietako bati arrakasta (e, "éxito" hitzetik) deitzen zaio, eta gertatzeko
probabilitatea m da; besteari, berriz, porrot (£ "fracaso" hitzetik) deitzen zaio, eta gertatzeko
probabilitatea 1 —m da.

Y behaketaren (hots, gertaeren guztizkoaren, m parametroa emanda) baldintzazko banaketa
Binomial(n, ) da, eta honela adierazten da:

fom = ()P -o",  y=1..n

Kontuan hartu behar da rt parametro finko bat dela hemen, eta y-ren balio posibleen banaketaren
probabilitatea behatzen ari garela.

Dena dela, y-ren eta m-ren arteko erlazioa aztertzean y parametro finkoa bada eta m har ditzakeen
balioen artean uzten badugu, lortzen den egiantz-funtzioa honako ekuazio honen bidez adieraz
daiteke:

fOlm) = (;) (1-m"Y, 0<m<1.

Lehen begiratuan adierazpen matematiko berdina ikusten bada ere, interpretazioa guztiz
desberdina da.

Bayesen Teorema aplikatzeko, datuak behatu aurretik genituen ezagutza eta usteekin eraikitako a
priori banaketa-funtzioa —g (7r)— behar dugula ikusi dugu arestian. A posteriori banaketa, beraz, a
priori banaketa eta egiantza biderkatuta lortzen da. Biderkadura horrek zentzua dauka baldin eta
soilik baldin aldez aurretiko banaketa egiantzarekiko independentea bada. Horregatik, funtsezkoa da
aldez aurretiko banaketak behatutako datuen eragina ez izatea. Kasu horretan, a posteriori
banaketa biderkadura horren proportzionala izango da.

g(mly) o« g(m) * f (y|m). (2.1)

Proportzionala dela esaten da, biderkadura hori kurbaren azpiko azalera 1 dela ziurtatuko
digun k konstante batekin zatitu behar dugulako dentsitate-funtzio zehatza lortzeko. k hori
honako integral honen bidez lortzen da: g(m) * f(y|m). Hortaz,

gm+fOlm
Jy 9@ * fy|m)

g(mly) = (2.2)
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Lehen begiratuan, izendatzailearen integralak arazoak sortuko dizkigula dirudi, zenbakizko
kalkulu asko egin behar baitira balioa lortzeko. lkusiko dugunez, berriz, dentsitate-funtzioen
propietateak baliatuta, askotan ez dugu urrats hori egin behar izango.

2.2 Aldez aurretiko banaketa uniformea

Banaketa uniforme jarraitua ausazko aldagai jarraituetarako probabilitate-banaketen "familia"
bat da, eta, banaketa horretan, ausazko aldagaiak probabilitate berdinarekin hartzen du balio
bakoitza. Eremua a eta b parametroen bidez definituta dago, eta parametro horiek balio
minimo eta maximoak dira. Banaketa forma laburtuan adierazten da maiz: U(a, b).

Banaketa uniforme jarraituaren probabilitate-dentsitatearen funtzioa honako hau da:

1
f=1p—a *=*=P
0 x<aox>bhb

Eta haren irudikapena, berriz, honako hau:

U(a,b) banaketa baten dentsitate-funtzioa

©
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Erraz ondoriozta daiteke banaketa uniforme baten batezbestekoa, mediana eta bariantza
honela adieraz daitezkeela:

_a+b Medi _a+b v _(b-a)?
m=—, ediana = ——, ar = ———.

Baldin eta a=0 eta b=1 bada, emaitzazko banaketari (U(0,1)) banaketa uniforme estandar
deitzen zaio, eta beta(1,1). banaketaren baliokidea da. Bestalde, aldez aurretiko behar adina
ezagutzarik ez dugunean, U(0,1) banaketa da nagusi inferentzia bayestarrean. Hortaz, datuek
eskaintzen diguten informazioan soilik oinarritutako emaitzak lortu nahi baditugu, m-ren balio
posible guztiei pisu bera emango dien dentsitate-funtzio uniforme estandar bat erabili beharko
dugu; hau da:

g(m =1, 0<m<1.

Kasu horretan, nabaria da a posteriori banaketa egiantzaren proportzionala dela:

g(nly) = (;)ny(l -m"Y,  0<m<1

T-ren araberakoa ez den partea baztertu egin daiteke. Izan ere, t-ren balioa edozein izanik ere beti
n
egongo den konstante bat da, eta, beraz, ez du eraginik a posteriori banaketan. (y) ezabatzean,

beta(a*, b*) banaketa ikus dezakegu, non a* =y 4+ 1 eta b* = n —y + 1, edota, era baliokidean,
a*=a+ eetab*=b +f. Beraz, erraza da mi-ren a posteriori banaketa lortzea integralik egin behar
izan gabe.

2.3 Aldez aurretiko beta banaketa

Askotan, balioak [0,1] tartean dituzten ausazko aldagai jarraituekin erabiltzen da beta banaketa, eta,
horregatik, oso egokia da proportzioak modelatzeko. Inferentzia bayestarrean, a priori banaketa
gisa erabiltzen da maiz, behaketek banaketa binomiala dutenean.

Dentsitate-funtzioa honela adierazten da, I'(c) Gamma funtzioa izanik:

ra+b) ,_,
- - 1_ b-1 < <1
fab) =] T@rey® ¢ O=sxs
0 x<0ox>1

Banaketa horren alderdi positibo nagusietako bat banaketa enpiriko ugaritara doitzeko aukera
da, oso forma desberdinak har baititzake banaketa definitzen duten a eta b parametroen
balioen arabera.

Ondorengo beta banaketen adibideetan, a eta b parametroek honako balio hauek hartzen
dituzte: {0.5, 1, 2, 3}. Ikus daitekeenez, a < b denean dentsitateak pisu handiagoa du
ezkerraldean, eta a > b denean, berriz, eskuinaldean; a = b denean, funtzioa simetrikoa da.
Azkenik, seigarren grafikoan argi eta garbi ikus daiteke beta(1,1) banaketaren funtzioa
banaketa uniformearen baliokidea dela [0,1] tartean.
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Dakigunez, beta banaketa baten batezbestekoa, moda eta bariantza honela adierazten dira:

Inferentzia bayestarrera itzuliz, m-rako erabilitako a priori banaketa-funtzioa beta(a, b) izanik:

g(m; a,b) =

Moda =

a—1
a+b-2’

I'(a + b)
r(a)r)

Var

~ (@+b2(a+b+1)

T[a_l(l _ ﬂ)b_l,

ab

0<m< 1.

Bayesen teoremaren emaitzek konstanteekin biderkatzean aldatzen ez direla dakigunez gero, T-ren
araberakoak ez diren parametroak baztertu egin daitezke, eta (3.1) ekuazioa izango dugu:

g(ly) <t (1 —m)Px ¥ (1 - m)"7,

g(ﬂl}’) o T[a+y—1(1 _ T[)b+n—1’

0<m<1.
<m<l1.
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Adierazpen horrek ondorengo banaketaren forma deskribatzen du .-ren funtzio baten bidez. Berriz
ere, beta banaketa bat jasotzen dugu a’ = a+y eta b’ = b + n — y parametroekin. Hau da,
arrakasta kopurua a parametroari gehitzen zaio, eta porrot kopurua, berriz, b parametroari. Era
horretan, a posteriori banaketa lortzen dugu berriz, integralik egin behar izan gabe:

I'n+a+b)
Iy+al(n—y+b)"

g(mly) = yta-1(] —qyny+b-1.  g<gr <1,

Horregatik, behaketa binomialak ditugunean komeni da beta(a, b) banaketa bat erabiltzea. Izan
ere, kalkuluak sinpleak dira eta, gainera, Bayesen teorema aplikatzean, familia bereko banaketa
berri bat lortuko dugu.

2.4 Aldez aurretiko banaketaren aukeraketa

Bayesen teoremak gure aldez aurretiko usteak datuek ematen duten informazioarekin
eguneratzeko aukera ematen digu. Horregatik, datuak aztertu aurretik, garrantzitsua da gure
ezagutzak era egokian adierazten jakitea.

2.4.1 Aldez aurretiko informazio urriarekin

Aldez aurretiko informazio gutxi dugunean, aurreko irudian proposatutako banaketa bat finka
dezakegu a priori banaketa gisa. Adibidez, m-ren balioa oso txikia dela uste badugu, komenigarria
izango litzateke honako banaketa hauetako bat erabiltzea: beta(0.5,1), beta(0.5,2), beta(0.5,3),
beta(1,2) edo beta(1,3). Guztiek kalkulu errazak eskainiko dizkigute, eta emaitzak antzeko
samarrak izango dira kasu guztietan.

2.4.2 Aldez aurretiko informazio errealarekin

Aukeratutako banaketa ahal den neurrian gure ustearekin bat etor dadin, ezagutzen dugunaren
batezbesteko eta desbiderapen estandarra erabiltzea iradokitzen da. my proportzioaren a priori
batezbestekoa eta g, a priori desbiderapen estandarra izanik.

Ikusi dugunez, beta(a, b) banaketa baten batezbestekoa honela adierazten da: my, = a;::b; eta

ab b
———————— Hortaz, — = 1 — m, izanik, eta
(a+b)2(a+b+1) ’ a+b 0 ’

desbiderapen estandarrean adierazpen hori eta batezbestekoaren adierazpena ordeztuz gero,

desbiderapen estandarra, berriz, honela: ¢, =

, 1- . .
honako hau lortuko dugu: oy = 25_73)). Horrela, beraz, ondorengo sistema ebatzita, gure

beta(a, b) banaketaren a eta b parametroak lortuko ditugu.

a
J( nO:a+b

(2.3)
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2.4.3 Kontuan hartu beharreko alderdiak

Komeni da aukeratutako banaketa marraztea, balioak arrazoizkoak direla eta gure ezagutzarekin bat
datozela egiaztatzeko. Bat ez badatoz, m, eta g-ren balioak alda daitezke kurbak nahi dugun forma
eduki arte.

Bestalde, komeni da, halaber, aldez aurretikoaren lagin-tamaina baliokidea kalkulatzea.

(

. . . : . 1- , .
Binomial(n, ) baten T = % proportzioak honako bariantza hau du: nTn) Bariantza hori aldez

aurretiko bariantzarekin berdinduz (a priori batezbestekoaren bidez):

Ty (1 — 1) ab
Tegq “(a+b)2(a+b+1)

ﬁ =T, eta a:;b =1 —m, denez gero, lagin-tamaina baliokidea ngq =a+ b+ 1 da. Hau da,
aukeratu dugun banaketak ematen duen informazio kantitatea tamaina horretako ausazko lagin
baten baliokidea da. Horrela, beraz, aukeratutako banaketa errealista den edo aldez aurretiko
banaketa solidoegi batekin lan egiten ari garen egiaztatu ahal izango dugu. Kasu horretan,
desbiderapen estandarraren balioa handitu beharko dugu gure a priori ezagutzaren pisua hain

handia izan ez dadin.
2.4.4 Aldez aurretiko banaketa jarraitu bat sortzea

Demagun orain gure ustea ez dela behar bezala adierazten beta(a, b) banaketa baten bidez. Kasu
horretan, gure ezagutzarekin bat datorren aldez aurretiko diskretu bat sor daiteke, eta, interpolazio
bidez, jarraitu bihurtu. Bayesen teoremaren propietateei esker, ez da beharrezkoa funtzioa
benetako dentsitate-banaketa bat izatea eragiten duen konstantea sartzea. Dena dela, egiantzaren
eta aldez aurretikoaren arteko biderkaduraren integrala kalkulatu beharko da.

2.4.5 Aldez aurretiko banaketaren eragina

Lan egiteko erabiltzen ditugun datuen bolumena zenbat eta handiagoa izan, orduan eta txikiagoa
izango da aldez aurretiko banaketaren eragina. Horrela, beraz, aldez aurretiko desberdin samar
batzuetatik abiatu bagara ere, oso antzekoak diren a priori banaketak lortu ahal izango ditugu.

2.4.6 Adibidea

Ikastetxe bateko zuzendaria, matematikako irakaslea, ingeleseko irakaslea eta haur baten ama
eztabaidatzen ari dira matematikako hurrengo azterketa gaindituko dutenen ehunekoari buruz.
Zuzendaria oso baikorra da, bere kargu irakaslerik onenak dituelakoan baitago. Harentzat, a priori
proportzioaren batezbestekoa 0,8 da, 0,08ko desbiderapenarekin. Hortaz, zuzendariaren ustearekin
bat datorren beta(a, b) banaketaren parametroak lortuko ditugu, eta (2.3) sistema ebatziko dugu:

08=—2

T a+b
0.082 — 0.8 0.2
T a+b+1

Horrela, beraz, zuzendariarentzat, a=19.2 eta b=4.8 izango da, a + b + 1 = 25 lagin-tamaina
baliokidea izanik.

PROPORTZIO BATERAKO INFERENTZIA BAYESTARRA 24

2 Eustat



Matematikako irakasleak ez du bere ustera ongi hurbiltzen den banaketarik aurkitzen, bere ustea
forma trapezoidal batekin hobeto irudikatzen dela pentsatzen baitu. Ondorengo taulan, irakasle
horrek balio posible bakoitzari ematen dion pisua jaso dugu.

Balioa

Pisua 0 0 0 1 2 3 3 3 2 1 0

Balioak linealki interpolatuz, honela adieraz dezakegu irakaslearen aldez aurretiko banaketa:

10— 2 02<m<0.5
g(m) = 3 05<m7<07
—10r+10 07<m<1

Ingeleseko irakasleak ez daki ikasleek nolako trebetasunak dituzten matematikan. Horregatik, ez du
kontuan hartzen a priori informaziorik, eta banaketa uniforme bat erabiltzen du. Hortaz, irakasle
horrentzat, a=b=1 da, eta lagin-tamaina baliokidea, berriz, a+b+1=3.

Azkenik, ikaslearen amak eskolara joaten zen garaiko oroitzapenetan oinarritzen du bere ezagutza.
Oroitzapen horien arabera, 30 ikasle zeuden amaren ikasgelan, eta gainditu dutenen ehunekoa
% 50 inguru zen. Kasu horretan, honako sistema hau ebatzi behar dugu a priori beta(a, b)
banaketaren parametroak lortzeko:

0.5 = —
T a+b
30=a+b+1

Hortaz, amaren usteak beta(24.5,24.5) banaketari jarraitzen dio, eta banaketa hori simetrikoa da a
priori batezbestekoarekiko.

Handik egun batzuetara, 100 ikaslek egin dute azterketa, eta 74k gainditu dute (y=74.
Zuzendariaren, ingeleseko irakaslearen eta amaren ondorengo banaketak automatikoki lortzen dira:

beta(19.2 + 74,4.8 + 26) = beta(93.2,30.8),
beta(1 + 74,1+ 26) = beta(75,27),
beta(24.5 + 74,24.5 + 26) = beta(98.5,50.5).

Matematikako irakaslearena lortzeko, berriz, kalkuluren bat egin beharko dugu. Horretarako, R
lengoaian inplementatutako Bolstad liburutegia erabiliko dugu.

Ondorengo irudietan, a priori eta a posteriori banaketak ditugu.
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Lehen hiru kasuetan, a priori banaketa guztiz desberdinekin hasita ere, a posteriori banaketak
antzekoak dira. Adibidez, ingeleseko irakasleak gaiari lotutako aldez aurretiko usterik ez zuenez gero,
behatutakoaren eragina jasotzen du. Zuzendariak, berriz, 25 ikasleko lagin baten inguruko ezagutzak
zituen, eta 100 ikaslerekin lortutako datuak uste baino okerragoak izan direnez gero, zuzendariaren
a posteriori banaketak ezkerrera egin du zertxobait. Eta, azkenik, amak 30 ikasleko lagin batean
behatutakoarekin justifikatzen zuen bere ezkortasuna. 100 ikasleren azterketen emaitzak ikusi
ondoren, gainditu dutenen proportzioaren inguruko ustea balio handiago batean zentratuta dago
orain.

2.5 Ondorengo banaketa

A posteriori banaketak datuak behatu ondoren parametroaz dugun ezagutza adierazten du, eta gure
a priori ezagutza (aldez aurretiko banaketa) eta datuak (egiantza) biltzen ditu.

Normalean, ez da erraza izaten banaketa bat lehen begi-kolpean interpretatzea, eta horretan
lagunduko diguten parametroak behar ditugu. Halaber, sinesgarritasun-tarte bayestarrak
kalkulatzen dira; tarte bayestar horiek, konfiantza-tarte tradizionalek ez bezala, probabilitate
kontzeptuarekin lan egiteko aukera ematen digute.

2.5.1 Posizio-neurria eta zentrorako joeraren neurria

Lehenik eta behin, hiru posizio-neurririk ezagunenak hartuko ditugu kontuan: ondorengo moda,
ondorengo mediana eta ondorengo batezbestekoa.

A posteriori moda ondorengo banaketa maximizatzen duen balioa da. Banaketa jarraitua bada,
maximoak dentsitate-banaketa deribatu eta lortutako adierazpena Orekin berdintzen du.
Ondorengo banaketa beta(a’, b") bat denean, deribatua honela adierazten da:

gluly) = @ = Dr¥ 2« (1=m)" 4747 (DG - DA -m)" 2,
g’ (m|y) Orekin berdintzen badugu, honako hau lortuko dugu:

a —1

da=———
Mot = =2
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Hala ere, modak alderdi negatibo batzuk ditu posizio-neurri gisa. Lehenik eta behin, moda
banaketaren mutur batetik hurbil egon daiteke, eta kasu horretan ez litzateke oso adierazgarria
izango. Gainera, banaketak hainbat maximo lokal izan ditzake, eta prozesu honekin maximo eta
minimo lokal guztiak aurkituko genituzke.

Ondorengo mediana datu guztiak txikitik handira ordenatuta daudenean datu horien erdian dagoen
balioa da. Baldin eta g(mt|y) beta(a’, b") bat bada, mediana honako honen soluzioa da:

mediana
f g(m|y)dm = 0.5.
0

Mediana lokalizazio-neurri bikaina da, baina alde txar bat dauka: zenbakizko kalkuluak egin behar
dira lortzeko.

Azkenik, batezbestekoa oso neurri erabilia da. Batezbestekoa a posteriori banaketan espero den
balioa da.

m = fol m g(mly)dm. (2.4)

Batezbestekoa nabarmen aldatzen da banaketak ilara astun bat duenean. Are gehiago, banaketa
alboratuta badago eta ilara astun bat badauka, batezbestekoaren balioa balio gehienetatik oso
urrun gera daiteke. Baldin eta g(mt|y) beta(a’,b") bat bada, batezbestekoak honako balio hau
izango du:

m' = . (2.5)

beta(a',b") banaketa Oren eta len artean bornatuta dago, eta, beraz, ez du ilara astunik. Hortaz,
batezbestekoa posizio-neurri egokia izango da a posteriori beta banaketetarako.

2.5.2 Sakabanatze-neurriak

A posteriori banaketa batean aztertu beharreko bigarren alderdi interesgarria banaketa horrek
dituen balioen sakabanatzea da. Oso sakabanatuta badaude, parametroaren informazioa ez da
zehatza izango, datuen analisian lortutakoa gorabehera.

Ondorengo bariantza honela adierazten da:

1
Var(nly) = f (@ —1)g(mly)dm. (2.6)
0
Banaketa beta(a’, b") bat bada,

a'b’
(@' + b2 +b" +1)

Var(mly) = 2.7)

Bariantza, batezbestekoa bezala, nabarmen aldatzen da ilara astunak dituzten banaketekin.
Baldintza horietan, bariantza oso handia izango da, probabilitate gehienak banaketaren erdialdetik
hurbil samar kontzentratuta badaude ere. Bestalde, bariantza unitate karratuetan ematen da, eta,
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beraz, haren interpretazioa ez da oso intuitiboa. Arazo horiek konpontzeko, askoz ohikoagoa da
ondorengo desbiderapen estandarrarekin (hots, bariantzaren erro karratuarekin) lan egitea.

A posteriori banaketaren k-garren pertzentila m;, balioa da, hau da, bere azpiko azaleraren % k
biltzen duena. Balio hori honako adierazpen hau zenbakiz ebazteko erabiltzen da:

Tk
k=100 *f g(m|y)dm.

Pertzentil batzuk bereziki garrantzitsuak dira: lehen kuartila (Q4) 25. pertzentila da, bigarren kuartila
edo mediana 50. pertzentila, eta hirugarren kuartila (Q3) 75. pertzentila.

Kuartilarteko heina (IQR = Q3 — Q,) ilara astunek aldatzen ez duten sakabanatze-neurri bat da.

2.4.6 Adibidea (jarraipena)

Aurreko adibidera itzuliz, posizio-neurri eta sakabanatze-neurri batzuk kalkulatuko ditugu.
Zuzendariaren, ingeleseko irakaslearen eta amaren kasuan, batezbestekoa eta desbiderapena
zuzenean kalkula ditzakegu (2.4) eta (2.6) formulak erabiliz. Matematikako irakaslearen kasuan,
berriz, (2.3) eta (2.5) ekuazioak erabili behar ditugu, eta zenbakiz ebatzi. Ondorengo taulan,
lortutako neurrietako batzuk agertzen dira. Ondoriozta dezakegunez, amaren kasurako
zenbatetsitako balioak izan ezik, ondorengo balioak antzeko samarrak dira, a priori banaketa
desberdinetatik abiatu badira ere. Azpimarratu beharra dago ingeleseko irakaslea eta ama aldez
aurretiko batez besteko proportzio beretik abiatu direla, baina ondorengo batezbestekoak
desberdin samarrak direla. Diferentzia hori amak aldez aurretiko informazio gehiago zeukalako
gertatu da.

Pertsona Banaketa Batezbestekoa Mediana Desbid. est. (O]
Beta(19.2, 4.8) 0.8 0.8084153 0.08 0.1087928
Zuzendaria
Beta(93.2,30.8)  0.7516129 0.7529691 0.03864618  0.05229502
Beta(1, 1) 0.5 0.5 0.2886751 0.5
Ingeleseko
irakaslea Beta(75, 27) 0.7352941 0.7368369 0.04347041  0.05888509
Diskretua 0.66 0.6 0.02666667 0.2
Matem.
irakaslea Zenbakizkoa 0.7297143 0.7297702 0.04255308  0.05694306
Beta(24.5, 24.5) 0.5 0.5 0.08838835  0.1216675
Ama
Beta(98.5,50.5)  0.6832061 0.684141 0.04049275  0.05484126
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2.7 Sinesgarritasun-tarte bayestarrak

Sinesgarritasun-tarte bayestar bat zera da, parametro jakin bat edukitzeko (1 — a) ondorengo
probabilitatea duten balioen hein bat. Tarte horiek tradizionalen aldean duten abantaila nagusia
probabilitatea zuzenean interpretatzeko aukera ematen dutela da.

2.7.1 n-rako sinesgarritasun-tarte bayestarra
Dakigunez, beta(a, b) banaketa batekin lan egiten bada, a posteriori banaketa beta(a’,b") bat
izango da. Banaketa hori banaketa normal baten bidez hurbil daiteke, batezbestekoari eta
desbiderapenari eutsiz.

(m|y) da gutxi gorabehera N(m’, (s’)?).

Non

L al ,2_ albl
L A N Y S ET RN

Horrela, beraz, m-ren (1 — a) * 100%eko sinesgarritasun-eskualdea honako hau da gutxi
gorabehera:

m' + za *s'.
2

Non za banaketa normalaren taulatik lortzen dugun balioa den. 95%eko sinesgarritasun-tarte

2
baterako, z; 25 = 1.96 da. Hurbilketa horrek oso portaera ona dauka denean. a, b = 10.
2.7.2 Adibidea (jarraipena)

Aurreko adibidearekin jarraituz, gainditu dutenen proportziorako % 95eko sinesgarritasun-tarteak
kalkulatu ditugu. Lau kasuetan, formula zehatzaren (beta banaketa) eta hurbilketa normal baten
bidez lortu ditugu. Taulako datuak behatu ondoren, hurbilketak balio zehatzetik oso hurbil daudela
ondoriozta daiteke.

Pertsona Ondorengo Sinesgarritasun-tarte Sinesgarritasun-tarte
banaketa zehatza normala
Zuzendaria Beta(93.2, 30.8) (0.6857768, 0.8128175) (0.6758678, 0.827358)
Ingeleseko Beta(75, 27) (0.6612032, 0.804115) (0.6500937, 0.8204946)
irakaslea
Matem. irak. Zenbakizkoa (0.6418581, 0.8086913) (0.6463118,0.8131168)
Ama Beta(98.5, 50.5) (0.6150072, 0.7482125) (0.6038418, 0.7625704)
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3. Kapitulua

3. Batezbesteko normal baterako inferentzia bayestarra

3.1 Sarrera

Estatistikan eta probabilitatean, fenomeno errealetan hurbilduta gehien agertzen diren aldagai
jarraituko probabilitate-banaketetako bati deitzen zaio banaketa normal, Gaussen banaketa edo
banaketa gausstarra. Batez ere horregatik garatu dira hainbeste metodo estatistiko banaketa mota
horretarako.

N (u,oz) banaketa baten batezbestekoa da, eta bariantza, berriz, ¢2; dentsitate-funtzioa honela
adierazten da:

1
e 202

N2
oM w0 < x < o0,

2y _
x|y, 0%) =
g(xl 0) V2no

Banaketaren dentsitate-funtzioaren grafikoak kanpai-forma dauka, eta parametro estatistiko jakin
batekiko simetrikoa da. Kurba horri Gaussen kanpai deitzen zaio, eta funtzio gausstar baten grafikoa
da. Ondoren, hainbat batezbesteko eta bariantza dituzten kanpai batzuk ikusiko ditugu.

Banaketa Normala N (1, 62)

0.8

0.6

0.4

0.2

0.0

Probabilitateen banaketa normalen "familia" bat dago. Dakigunez, banaketa bakoitzak batezbesteko
edo desbiderapen estandar desberdina izan dezake. Beraz, banaketa normalen kopurua mugagabea
da, eta ezinezkoa izango litzateke p eta o-ren konbinazio bakoitzerako probabilitate-taula bat
ematea. Arazo hori konpontzeko, banaketa normalen familiako "kide" bakarra erabiltzen da, hots, 0
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batezbestekoa eta 1 desbiderapen estandarra duena; banaketa horri N(0,1) banaketa estandar
normal deitzen zaio. Horrela, beraz, behaketa bakoitzeko batezbestekoa kenduz eta desbiderapen
estandarrarekin zatituz gero, banaketa normal guztiak banaketa estandar bihur daitezke.

3.1.1 Mugaren Teorema Zentrala

Teorema honen arabera, u batezbestekoa eta o2 bariantza dituen edozein banaketatik hartutako

Y1, -, Yn Ausazko lagin batetik abiatuta, % banaketa N(0,1) banaketa normal bat da mugan.

Hau da, banaketak mugan duen forma banaketa normal estandar batena izango da, jatorrizko
banaketa normala izan ala ez. Harrigarria bada ere, "muga" kontzeptua n = 25 den kasuan aplika
daiteke.

3.2 Bayesen teorema aldez aurretiko diskretu bat duen batezbesteko normal
baterako

3.2.1 Behaketa bakarrarekin

Har dezagun behaketa bakar bat f(y|u) dentsitate-funtziotik, c2. bariantza ezaguna duen
banaketa normal bat dela suposatuta. o desbiderapen estandarra bariantzaren erro karratua da, eta
m balio posible ditugu batezbestekorako: py,..., iy, . Balio horietatik abiatuta, behaketaren aurretik
genuen ustea adieraziko duen aldez aurretiko banaketa bat aukeratzen da. Aldez aurretiko
informaziorik izan ezean, arrakasta-probabilitate bera emango diegu balio guztiei.

Egiantzak pisuak ematen dizkie balio posible guztiei, gertatzeko probabilitatearen arabera.
Horretarako, behatutako balioa finkatu eta balio posible guztien arteko aldagaia aldatu behar dugu.
Ondorengo banaketa aldez aurretiko banaketaren eta egiantzaren biderkaduraren proportzionala
da.

prior * likelihood

guly) = 5

prior x likelihood
3.2.1.1 Behaketa bakarraren egiantza

y|u-ren baldintzazko banaketa normala da, eta batezbestekoa eta g2 bariantza ezaguna ditu.
Gainera, dentsitate-funtzioa honako hau da:

1
e—m(y—ll)z

flu) =

V2t o
Egiantzaren forma honela adierazten da:
- (y-w)?
fOlw) e 2077 7H (3.1)

Adierazpen horretan, J~k konstante jarraitzen du behatutako balioarekin, eta p balio posibleen
artean dago. Egiantzaren balioa lortzeko, bi aukera ditugu. Alde batetik, banaketa erreala banaketa
normal estandar bihur daiteke Z balioa edo Z estatistikoa erabiliz, hau da, hautatutako balioaren (X)
eta L batezbestekoaren arteko distantzia, o desbiderapen estandarrarekin zatitua.
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Formalki, baldin eta X~N(, 02) bada, orduan ausazko aldagaia z = % 0 batezbestekoa eta 1

desbiderapen estandarra duen banaketa normal estandar edo tipifikatu baten arabera banatzen da:
N (0,1). Adierazi beharra dago normal estandarraren banaketa Oren simetrikoa denez gero,

f(z) = f(—z). dela. Bigarren aukera, bestalde, egiantza zuzenean (3.1) formularen bidez lortzean

datza.

3.2.1.2 Adibidea

Demagun batezbestekoa eta 62 = 1 bariantza ezaguna dituen y|p normala dela eta -k 2, 2.5, 3, 3.5
eta 4 balioak probabilitate berdinarekin har ditzakeela. Behaketa bat ausaz hartu, eta y = 3.2.

Lehenik eta behin, z = % dela jakinik eta normalaren ohiko taularako emandako datuak kontuan

hartuta, honako taula hau sor dezakegu:

Aldez Egiantza Aldez Ondorengoa
aurretikoa aurretikoa*Egiantza
2 0.2 -1.2 0.1942 0.03884 0.1238
25 0.2 -0.7 0.3123 0.06246 0.1991
3 0.2 -0.2 0.3910 0.0782 0.2493
3.5 0.2 0.3 0.3814 0.07628 0.2431
4 0.2 0.8 0.2897 0.05794 0.1847
0.31372 1

(3.1) ekuazioaren bidez, berriz, honako taula hau dugu (biribiltze-erroreak salbuetsita, baliokideak

dira):

Aldez Egiantza

aurretikoa

Aldez

aurretikoa*Egiantza

Ondorengoa

2 0.2 e—%(3.2—2)2 — 04868 0.0974 0.1239
25 0.2 5332257 _ 4 4868 0.1565 0.1990
3 0.2 e—%(3.2—3)2 — 09802 0.1960 0.2493
3.5 0.2 »~332-35 _ 4 ge60 0.1912 0.2432
4 0.2 e232-9% _ 17961 0.1452 0.1846
0.7863 1
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3.2.2 Ausazko lagin batekin

Normalean, behaketa bakar baten ordez y,, y,, ..., ¥, behaketa izaten ditugu ausazko lagin batetik

abiatuta, non y;|u banaketa bakoitza normala den, batezbestekoarekin eta o?. bariantza

ezagunarekin. Ondorengo banaketa aldez aurretikoaren eta egiantzaren arteko biderkaduraren
proportzionala da, eta laginaren behaketak independenteak direnez gero, baterako egiantza
behaketa guztien egiantzaren biderkadurak ematen du:

fOu-oylw) = Fnlw) « fFzlw) = f Q.

Kasu honetan, beraz, honela adierazten da Bayesen teorema, aldez aurretiko diskretu batekin:

gy, yn) < g = falw) * f 2l *...x f ().

3.2.2.1 Ondorengo probabilitateak

Ondorengo probabilitateak banan banan bila daitezke, era sekuentzialean edo denak batera. Lehen
kasuan, behaketa baten ondorengoa hurrengo behaketaren aldez aurretiko bihurtzen da, baina
metodo hori oso neketsua izan daiteke laginaren tamaina handitzen den heinean. Bigarren kasuan,
behaketa bakoitza normala denez gero, guztiek egiantz normala dute, eta baterako egiantza honela
adierazten da:

fu - ynlp) e_ﬁ(yl_u)z * e_ﬁ(yz_“)z - e‘ﬁ()’n—ﬂ)z

’

Flo ylp) o e—%[(yl—u)z+(yz—u)2+~~-+(yn-u)2]
yeerVn

Parentesi artean dauden gaiei dagokienez:
[G1 =2+ 2 — w2+ + =21 =y = 2y + 02+ + y® — 2y + p? =

(}’12 + -t ynz)
n

=0+t ) - 2un+ )t =n —2u37+u2]

Orduan,

_ M2 oy pau2
2Z| B TZHY Y=Y 7

, (Y12+'“+.Vn2)]
[yl x<e ,

n o n [(y12++yn2) 72:|
fO, o ynlp) « e_ﬁ[”z_zﬂyﬂ’z]e 207| T y

V1,V2,---,Yn ausazko lagin normal baten egiantza y lagin-batezbestekoaren egiantzaren
proportzionala da. parametroaren mende ez dagoen zatia sinplifikatuz,

5t 1
f1 - Yali) e 20%/m :
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2
Ikusten denez, batezbestekoa eta % bariantza dituen normal baten forma dauka egiantza horrek. y

2
lagin-batezbestekoa ere batezbestekoa eta % bariantza dituen normal baten bidez banatuta dago,

eta, beraz, ausazko laginaren baterako egiantza lagin-batezbestekoaren egiantzaren proportzionala
da, honela adierazita:

gz -1
fOlp) xe . (3.2)

Hurrengo kapituluan ikusiko dugunez, formula horren bidez errazagoa eta eraginkorragoa da a
posteriori probabilitateak kalkulatzea.

3.2.2.2 Adibidea (jarraipena)

Demagun orain 4ko tamainako ausazko lagin bat hartu dugula batezbestekoa eta ¢? bariantza
dituen banaketa normal batetik: 3.2, 2.2, 3.6 eta 4.1. Lagin-batezbestekoa ¥ = 3.275 da, eta, haren
egiantza erabiliz, honako emaitza hauek lor ditzakegu:

Aldez Egiantza Aldez Ondorengoa
aurretikoa aurretikoa*Egiantza

2 0.2 —— 1 _(3275-2)2 0.0077 0.0157
e Z1/a327578° _ g 0387

25 0.2 —— 1 _(3.275-2.5)2 0.0602 0.1228
e Z1/A3275729)° _ 3008

3 0.2 ——L _(3275-3)2 0.1719 0.3505
e 7172327573 _ g g596

3.5 0.2 ——L _(3275-3.5)2 0.1807 0.3685
e Z1/A3275739)" _ 9037

1
4 0.2 e_m(3_275_4)2 03495 0.0699 0.1425
0.4904 1

3.3 Bayesen teorema aldez aurretiko jarraitu bat duen batezbesteko normal
baterako

Aurreko atalean, -k har zitzakeen balioak balio kopuru jakin batera mugatuta zeuden, baina
errealistagoa da pentsatzea -k edozein balio har dezakeela edo, gutxienez, tarte jakin batean
dauden guztiak. Kasu horietan, komeni da aldez aurretiko banaketa jarraitu bat erabiltzea. Honela
idatz dezakegu Bayesen teorema:

Jlys, e yn) < g * fa, . Yl

Aldez aurretikoa diskretua zenean, egiantzaren eta aldez aurretikoaren biderkadura -ren balio
guztien biderkaduren baturarekin zatitu behar genuen ondorengoa lortzeko. Banaketa jarraitua
denean, prozedura baliokidea biderkadura horren integrala egitea da. Hau da:
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g(.u) *f(yliiynl.u)
Ja@) * fa,.., ynl)du

gulys, .- yn) = (3.3)

Banaketa normal baterako, ausazko laginaren egiantza y lagin-batezbestekoaren egiantzaren
proportzionala da. Orduan,

1 - 52
g(u) * e 207”1
glys,-..,yn) = — :
-2

J 9@ xe 292/m" " dp

3.3.1 -rako aldez aurretiko dentsitate laua (Jeffrey-ren aldez aurretikoa)

Aldez aurretiko lauan, -k har ditzakeen balio guztiak probabilitate berekoak dira, eta guztiei pisu bera
ematen zaie: g(u) = 1. Aldez aurretiko laua ez da egiaz aldez aurretiko banaketa bat, eremuaren
integrala ez baita 1, baina hori ez da arazoa. Gainera, a posteriori banaketaren integrala 1 izango da,
eta hori da interesatzen zaiguna.

3.3.1.1 Behaketa normal bat

Demagun y behaketa batezbestekoa eta o2 bariantza dituen normal bat bezala banatutako
behaketa bat dela. Proportzionaltasun-konstantea alde batera utzita, egiantza honela lortzen da:

1

fOlp) o 72020717,

Aldez aurretikoa beti 1 denez gero, ondorengoa aurreko adierazpenaren proportzionala da.

1
gluly) x e 37,

Ekuazio horretatik abiatuta, ondoriozta dezakegu ondorengoak y batezbestekoa eta g2 bariantza
dituen banaketa normal bati jarraitzen diola.

3.3.1.2 Ausazko lagin normal bat

Aurreko atal batean ikusi dugunez, banaketa normal batetik hartutako ausazko lagin baten egiantza
y lagin-batezbestekoaren egiantzaren proportzionala da. Dakigunez, ¥ normal banatuta dago,

2
batezbestekoarekin eta % bariantzarekin. Orduan, konstantea alde batera uzten badugu, egiantza
honela lortzen da:

1

e~ (5 2
fG ) ece 22m”

Aldez aurretikoa beti 1 denez gero, ondorengoa aurreko adierazpenaren proportzionala da.

1

gl ly) « e =

2
Ekuazio horretatik abiatuta, ondoriozta dezakegu ondorengoak y batezbestekoa eta % bariantza
dituen banaketa normal bati jarraitzen diola.
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3.3.2 -rako aldez aurretiko dentsitate normala
3.3.2.1 Behaketa normal bat

Demagun batezbestekoa eta o2 bariantza ezaguna dituen banaketa normal batetik hartutako y
behaketa bat dugula. Demagun, halaber, m batezbestekoa eta s? bariantza dituen aldez aurretiko
normal bat dugula. ez duen zatia alde batera utzita, aldez aurretikoa eta egiantza honela lortzen
dira:

1

9w o 722,

1
fO lw) o« e 7207 TR,
Bi ekuazioen biderkadura honela adierazten da:

Uu-m)?®, (-p)°

W fylwce 2 s* 0

o?(p?-2pum+m?)+s?(y?-2yu+p?)
s2¢2

1
X e

_1[(0'2+s2)u2—2(02m+52y)u+m20'2+y252)]
xe 2 s?a?

(6% +52)
02s2
dauden gaiak xurgatzen baditugu, honako hau lortuko dugu:

gaia faktore komun gisa ateratzen, formula nabarmenak erabiltzen eta -ren mende ez

02+52

1 [ (6?m+s%y) . ((c?m+52y) 2
20252/(02+52)[H2 5202 “+( )

X e

2 (o?m+s%y)
A 02+s2

1
X e 20%s%2/(02+s?)

Horretan oinarrituta, ondoriozta dezakegu ondorengo banaketak honako batezbesteko eta
bariantza hauek dituela:

o’s

3 (c2m + s?%y) 2

02+ 52

!

, (= (3.4)

Hau da, N(m,s?) aldez aurretikoarekin hasi eta N(m',(s')?) ondorengoarekin amaitu dugu.
Horrek esan nahi du Bayesen teorema aplikatzean ez dela beharrezkoa izango integrala egitea,
familia bereko bi banaketa baitira.

3.3.1.3 Normal baten balioak eguneratzea

(3.4) ekuazioko adierazpenak sinplifikatu egin daitezke. Aurrenik, banaketaren zehaztasuna
definituko dugu, hau da, bariantzaren alderantzizko balioa. Zehaztasunak batukortasun-propietatea
betetzen du, eta ondorengoa honela adierazten da:
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1 [ o%? _1_(02+52)_1+1
(s"N?2  \(02 +s2) - 0252 52 g2

Hau da, ondorengo zehaztasuna aldez aurretiko zehaztasunaren eta behaketaren zehaztasunaren
arteko baturaren berdina da. Ondorengo batezbestekoa, berriz, honela adierazten da:

, _(a’m+s%y)  o? s

= *m + *
02+ s2 02+ 52 0%+ s2

2

y.

Sinplifikazioren bat eginez, ikusiko dugu ondorengo batezbestekoa aldez aurretiko
batezbestekoaren eta behaketaren batezbestekoaren batezbesteko haztatua dela, pisuak
ondorengo zehaztasunak izanik.

!

Aldez aurretiko lauaren kasuan, bariantza infinitua da, eta, beraz, zehaztasuna 0 da. Hortaz,
ondorengo zehaztasuna eta aldez aurretiko zehaztasuna berdinak izango dira, eta a posteriori
bariantzak ere bai (d2).

Hala ere, aldez aurretiko horren a priori batezbestekoa ez dago oso ongi zehaztuta. Beraz, a
posteriori batezbestekoak behaketaren balio bera duela ulertuko da. y.

3.3.1.2 Ausazko lagin normal bat

Demagun batezbestekoa eta g2 bariantza ezaguna dituen banaketa normal batetik hartutako
V1, V2, .-, Y ausazko lagin bat dugula. Honako aldez aurretiko banaketa normal hau izango dugu,
m batezbestekoarekin eta s? bariantzarekin:

g0 o T

y lagin-batezbestekoaren egiantza erabiliko dugu; batezbesteko hori batezbestekoa eta 02 /n
bariantza ezaguna dituen normal bat bezala banatuta dago. y-ren zehaztasuna % da, hots,
behaketen zehaztasun guztien batura. Gainera, ondorengo zehaztasuna aldez aurretiko
zehaztasunaren eta y-ren zehaztasunaren arteko baturaren berdina da, eta ondorengo bariantza
ondorengo zehaztasunaren erreziprokoa da.

1 1 n (o%+ns?)
=2 ) 3.5)

(S,)z - s2 g2 o252

Azkenik, ondorengo batezbestekoa aldez aurretiko batezbestekoaren eta y-ren batezbestekoaren
batezbesteko haztatua da, pisuak ondorengo zehaztasunak izanik:

) 1/s? n/o?

=— ———* V. 3.6
m n/02+1/52*m+n/02+1/52*y (3.6)
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3.4 Aldez aurretiko normala aukeratzea

Aldez aurretiko banaketa aukeratzeko garaian, gure ezagutza ahal bezain ongien adieraztea da
helburua. Bariantza ezaguneko banaketa normal batetik hartutako behaketen kasuan, -rako
banaketak N (m, s2) dira. Gure usteak horrelako banaketa baten bidez adierazten baditugu, erraza
izango da gure ezagutza Bayesen teoremarekin eta (3.5) eta (3.6) ekuazioekin eguneratzea, ez baita
beharrezkoa izango integralak zenbakiz kalkulatzea.

Lehen urratsa gure ustea, m aldez aurretiko batezbestekoa eta s aldez aurretiko desbiderapen
estandarra zer baliotan zentratuta dauden erabakitzea izango da. Horretarako, gure ezagutzaren
arabera balio minimo eta maximo posibleak hartzea (m-+x m-x), haien diferentzia ateratzea eta

emaitza 6rekin zatitzea izango da errazena. Lortutako balioak arrazoizko probabilitate bat emango
(m+x)—-(m-x) _ 2x

6 T 6
horren helburua P(m < m + x) = 0.4987 probabilitatea bilatzea eta honako adierazpen hau

die posibletzat hartu ditugun balioei. Hau da, sd = =§ izango da. Prozedura

tipifikatzea da: P (Z < 95—6) = 0.4987. Normal estandarraren probabilitateen taulan oinarrituta,

f =3=s= glortuko dugu.

Berriz ere, komeni da aldez aurretiko banaketaren lagin-tamaina baliokidea kontuan hartzea, behar

2
bezala egokitzen den jakiteko. n, =:—

5. Mgq handia izateak esan nahi du gure ezagutzak

esanguratsuak izango direla, eta ebidentzia berri ugari beharko dira balio horietatik urruntzeko. n,,
txikia bada, berriz, ondorengo ezagutzak behatutakoaren eragin handia izango du.

Gure ezagutza behar bezala hurbilduko duen banaketa normalik aurkitu ezean, balio batzuk finkatu
(bilatzen dugun balioa balio horien artean egotea espero dugu) eta elkarren artean interpolatu
daitezke aldez aurretikoa lortzeko. Kasu horietan, ondorengo banaketa honako hau izango da:

fu Y2 Yali) * g()
T y2 - yali) * g()dp

g(#b’l'}’z'---'}’n) =

3.4.1 Adibidea

Silvia, Leire, Ane eta Sara urmael baten aurrean daude, eta bertan dauden karpa gorrien luzeraren
batezbestekoa kalkulatu nahi dute. Aldez aurretiko azterlan batzuengatik dakigunez, 2 cm-ko
desbiderapen estandar ezaguna duen normal baten bidez banatzen da luzera. Silviak 40 cm-tan
finkatu du bere aldez aurretiko batezbestekoa, eta uste du ezinezkoa dela luzera [28,52]. tartetik

kanpo egotea. Hortaz, s = 52;28 = % = 4 izango da, eta, beraz, Silviak N (40, 42). bat erabiliko du.

Leirek, berriz, ez daki ezer karpei buruz, eta aldez aurretiko lau bat erabiltzea erabaki du. Anek,
bestalde, bere aldez aurretikoak banaketa normala eduki ordez forma trapezoidala edukiko duela
erabaki du. Horrela, beraz, Oko pisua eman dio 8 balioari, 1eko pisua 14-30 balioei, eta berriz ere
Okoa 36 balioari. Azkenik, Sarak gogoratu du behin 50 cm-ko karpa bat ikusi zuela, eta informazio

horretan oinarritu du bere ustea. Laginaren tamaina baliokidea 1 denez gero, bariantza honako hau
0.2

izango da: s% = —= 22. Hortaz, aukeratutako banaketa N (50, 22) bat izango da.
eq

Ondoren, 12 karpako ausazko lagin bat hartu eta laginaren batezbestekoa kalkulatu dute: y = 42
cm. Silviak, Leirek eta Sarak beren batezbestekoa eta ondorengo desbiderapena kalkulatu dute (3.5)
eta (3.6) ekuazioen bidez. Lehen kasuan,
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1 1 12
—+—==s'=0.5714,

()2 = 42 ' 92
1 12
12 92
m' = 4T* 20 + +* 22 = 41.95699
0.57142 0.57142
Aldez aurretiko lauaren kasuan:
1 12 , ,
Eta Sararen kasuan:
1 1 12 ,
)2 = >z + 57 = s’ = 0.5547,
1 12
22 92
m' = ZT* 40 + +* 42 = 42.85086
0.55472 0.55472

Hiru a posteriori banaketak normalak dira. Dena dela, Aneren kasuan (3.3) ekuazioa erabili behar da,
eta, horretarako, zenbakizko integrazioa behar da. Ondorengo grafikoetan, gure datuen aldez
aurretiko eta ondorengo banaketak ditugu irudikatuta. Azpimarratu beharra dago aldez aurretikoak
marrazteko garaian Leire eta Aneren kurben azpiko eremua bat izatea eragiten duen konstantea
hartu dugula kontuan.

Karpa gorriaren luzeraren aldez aurretiko banaketak Karpa gorriaren luzeraren ondorengo banaketak (4,

?‘ @
o (=]
— b — o
Laiw Larve
e ©
= Ang (=] Ans
San 18]
Q -
= =
= o
8 o
S o
3 < rosss - S
= (=]
20 30 40 50 60 as 40 42 44 45

Lehen hiru banaketak ia berdinak dira, aldez aurretiko desberdinetatik abiatu badira ere. Hain zuzen
ere, banaketak balio beraren inguruan zentratuta zeudelako eta aldez aurretiko ezagutza
zehaztugabeetan oinarrituta zeudenez gero ezagutza horiek behatutako emaitzen eragin handia
jaso dutelako gertatu da hori. Sararen ustea, berriz, alboratuago zegoen, baina behatutako 12
karpen emaitzen ondorioz, haren ezagutzak balio nabarmen txikiago batean zentratuta daude orain.
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3.5 Batezbesteko normal baterako sinesgarritasun-tarte bayestarrak

Zenbaitetan, interesgarria izan daiteke gure "post-data" ezagutza balio-hein jakin batean
laburbiltzea eta, horren arabera, probabilitate-maila batekin balioak barruan egotea. Kontzeptu
horri tarte bayestar deitzen zaio. Normalean, ilara berdinak dituzten tarteekin lan egingo dugu.

3.5.1 Bariantza ezaguna

Y1, Y2, ---,Yn behaketak N (u, 02) banaketa batetik hartutako ausazko lagin bat direnean, ¥ lagin-
batezbestekoa N (u, 02 /n) da. Aldez aurretiko lau bat edo aldez aurretiko normal bat —N (m, s2)—
erabiliz, -ren ondorengo banaketa, ¥ emanik, (m’, (s")?) da.

-rako (1 — a) * 100%-eko sinesgarritasun-tarte bayestarra honako hau da:

m' + Z% *s', 3.7)

Non zaz normalaren probabilitate-taulan aurkituko dugun. Hortaz, egiazko batezbestekoa tartearen
2

barruan ez egoteko probabilitatea a da.
3.5.2 Bariantza ezezaguna

Bariantza ezezaguna denean, zehaztasuna ere ezezaguna da, eta, beraz, eguneratze-arauak ezin
ditugu zuzenean aplikatu. Hasteko, laginaren bariantza kalkulatuko dugu:

n
1 -
6 =—=> i -V
i=1

Ondoren, (3.4) eta (4.5) ekuazioak erabiliko ditugu (s")? eta m’ aurkitzeko, eta 6> parametroa
erabiliko dugu -ren ordez. 62.

Kasu horretan, ziurgabetasuna handiagoa da, o2 parametroa ere kalkulatu egin delako. Hori dela-
eta, tarteek zabalagoak izan beharko lukete. Helburu horrekin, normalaren taula estandarra erabili
ordez Studenten t banaketa erabiliko dugu, df = n — 1 askatasun-gradurekin. Hortaz:

m' + t% *s', (3.8)

3.5.3 Aldez aurretiko ez-normala

Aldez aurretikoa normala ez denean, ondorengo banaketa ez-normal bat lortzen da Bayesen
teoremaren eta zenbakizko integrazioaren bidez. Kasu horretan, (1 — a) * 100%-eko
sinesgarritasun-tartea lor daiteke, non y;-k eta p,,-k honako hau beteko duten:

Hy
J- gy yy--my,)du=1-a.
Ky

W, eta u,, balioak ez dira bakarrak, eta, beraz, tarterik txikiena emango digutenak bilatuko ditugu.
Gainera, honako hau ere bete beharko dute:
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Iy Ya, oY) = 9ulys, Y2, - Yn)-

3.5.4 Adibidea (jarraipena)

Silviak, Leirek eta Sarak (3.7) ekuazioaren bidez kalkula dezakete 95%-eko sinesgarritasun-tartea.
Anek, berriz, zenbakiz kalkulatu behar du. lkus daitekeenez, tarteak antzekoak dira, lehen hiru
kasuetan batez ere. Hortaz, behatutako datuen eragina aldez aurretikoaren eragina baino askoz

handiagoa dela ondorioztatuko dugu.

Pertsona Ondorengo banaketa Sinesgarritasun-tartea
Silvia N(41.96,0.57142) (41.01927- 42.8991)
Leire N(42,0.5774%) (41.05026- 42.94974)

Ane Zenbakizkoa (40.85819-43.11781)
Sara N(42.85,0.5774%) (41.93846-43.76326)
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4. Kapitulua

4. Batezbestekoen diferentziarako inferentzia bayestarra

Konparazioak funtsezkoak dira zientzia esperimentalean. Ausazko bi lagin konparatzeko, ez da
eraginkorra lagin bakoitzean lortutako behaketak banan-banan konparatzea. Horregatik, lagin-
batezbestekoak erabiliko ditugu konparazioak egiteko. Kasu gehienetan, banaketak normalak
dira edo banaketa normal batera hurbil daitezke. Horregatik, bi banaketa normalen
batezbestekoak konparatuko ditugu. Bestalde, lortutako ausazko laginak elkarren
independenteak izaten dira maiz, eta, horregatik, independentziaren hipotesia betetzen dela
suposatuko dugu kapitulu honetan.

4.1 Bariantza ezaguna eta berdina duten bi banaketa normalen ausazko lagin
independenteak

Demagun ¢ bariantza ezaguna dela. Bi laginak independenteak direnez gero, aldez aurretiko
bi banaketa desberdin erabiliko ditugu batezbesteko bakoitzerako: N(my,s;?) eta
N(my,s,?). Hortaz, ondorengo banaketak ere independenteak izango dira eta honela
adieraziko dira:

Plyits Ynll“’N(m’p (s"D)?)

t21y12, ---'YnZZNN(mlz' (s'2)%)
Adierazpen horretan, m’; eta (s';)? (4.5) eta (4.6) formuletatik lortzen dira (i = 1,2 izanik).
H1lYi1s oo Y1 ~N(m'y, (5'1)?) eta Ua|yiz, oy Yn,a~N(m'y, (s'2)?) elkarren independenteak

direnez gero, batezbestekoak eta bariantzak ausazko aldagai independenteetarako dituzten
propietateak erabil daitezke. Horrek ondorengo banaketa hau ematen digu: u; = pq — p». Hau da,

Kalyi1s - Yni1Vi2, = Ynzz“'N(m’d' s')?)

Non m'y =m'; —m', eta (s'y)% = (s'1)? + (s',)? diren. Hain zuzen ere, banaketa hori
erabiliko dugu p; — u, batezbestekoen diferentzian inferitzeko.

4.1.1 Batezbestekoen diferentziarako sinesgarritasun-tarteak, bariantza ezaguna eta berdina
izanik

Bariantza ezaguna denean, za balio kritikoa taula normal estandarizatutik lortzen da. Kasu horretan,

2
honela adierazten da (1 — a) * 100%-eko sinesgarritasun-tarte bayestarra u; = @y — t,-rako:

m'y + Z% %S 4. 4.1

Eta honela berridatz daiteke:
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my—my e [ 4 @7 (42)

Hau da, u; — u, konfiantza-tartean egoteko probabilitatea (1 — a) * 100% da.
4.1.2 Aldebakarreko hipotesi-test bayestarra

Gure helburua p, batezbestekoa u, baino handiagoa den zehaztea bada, honako hipotesi-kontraste
hau planteatu behar dugu:

{HO: ,ud S 0
H]_: Ha >0

Non pu4 = g — U, batezbestekoen arteko diferentzia den. Era bayestarrean inferitzeko,
hipotesi nuluaren ondorengo probabilitatea kalkulatu behar da, hots, P(ug < 0|datos), non
datos bi laginetako behaketak biltzen dituzten: y;4, ..., ¥n,1 €ta Y13, ..., ¥n,2. Probabilitatea
tipifikatuz, honako hau lortuko dugu:

-m' 0—m' 0—m'
P(udsmdatos):P(”d, < d>=P<Zs4>. (4.3)
Sa Sd Sda

Adierazpen horretan, Z-k banaketa normal estandarrari jarraitzen dio. Normalaren
probabilitate-taulatik abiatuta, P (Z < d

- ) probabilitatea a baino txikiagoa bada, hipotesi
d

nulua baztertu egin daiteke maila horretan. Kasu horretan, u; batezbestekoa u, baino
handiagoa dela ondoriozta daiteke.

4.1.2 Aldebakarreko hipotesi-test bayestarra

Inferentzia bayestarrak ez du aukerarik ematen ondorengo probabilitatea kalkulatzearen bidez
Hy: ug = 0 versus Hy: pg # 0 moduko aldebiko kontrasteak egiteko; aldez aurretiko jarraitu bat
erabiltzen bada, ondorengoa ere jarraitua izango da, eta banaketa jarraitu orok puntu batean duen
probabilitatea 0 da. Hori dela-eta, p4-ren sinesgarritasun-tartea erabili beharko da. O tartean
badago, ezin da hipotesi nulua baztertu; O tartean ez badago, berriz, batezbestekoen diferentzia
onartzen da (1 — a) * 100-eko probabilitatearekin.

4.2 Bariantza ezezaguna eta berdina eta aldez aurretiko laua duten bi banaketa
normalen ausazko lagin independenteak

2 2
. ™ g g —
Uy eta pi,-rako aldez aurretiko lau bat erabili denez gero, (s';)? = o (s'5)? = p m'; =9y

etam’, = y, izango da.

4.2.1 Batezbestekoen diferentziarako sinesgarritasun-tarteak, bariantza ezezaguna eta
berdina izanik

Bariantzaren balioa ezezaguna denez gero, datuetatik abiatuta kalkulatu beharko da.

5'2 _ Z?:ll(yil - 3_/1)2 + Z?ﬁl(in - 372)2 (4 4)
P ny +n, — 2 ' '
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Kasu horretan, sinesgarritasun-tarteak zabalagoak izango dira, bariantza zenbatestean
ziurgabetasuna handiagoa baita. Balio kritikoa Studenten t banaketaren taulatik lortuko da
(ny + n, — 2 askatasun-gradurekin). Hortaz, pu; — p,-ren sinesgarritasun-tarte bayestar
hurbildua honako hau da:

(4.5)

4.2.2 Aldebakarreko hipotesi-test bayestarra

Hy: pg < 0 versus Hy: pg > 0 hipotesiak kontrastatu nahi badira (ausazko bi laginak 6§—ren
arabera zenbatetsitako bariantza berdin ezezaguna duen normal batetik hartu direla eta y; eta
Uo-ren aldez aurretiko banaketak lauak direla suposatuta), Hy-ren ondorengo probabilitatea
kalkulatu beharko da (4.3) formularen bidez eta Studenten t banaketaren taula erabilita
(n; + n, — 2 askatasun-gradurekin), normalaren taula erabili ordez.

4.2.3 Aldebiko hipotesi-test bayestarra

Baldintza beretan, (4.5) ekuazioan eman den eta n; + n, — 2 askatasun-gradu dituen p; — p, -ren
sinesgarritasun-tartea erabiliko dugu Hy: pg = 0 versus Hy: ug # 0 kontrastatzeko. Berriz ere, a
esangura-mailako hipotesi nulua baztertuko da Oa tartean ez badago.

4.3 Bariantza desberdin ezagunak dituzten bi banaketa normalen ausazko lagin
independenteak

U, batezbestekoa eta o? bariantza ezaguna dituen banaketa normal batetik hartutako
Y11, > Yn,1 @usazko lagina eta u, batezbestekoa eta 0# bariantza ezaguna dituen banaketa
normal batetik hartutako y3,..,¥n,» ausazko lagina ditugu. Bi laginak elkarren
independenteak dira.

Aldez aurretiko independenteak erabiliko ditugu u, eta u,-rako, banaketa normalak edo lauak.
Laginak eta banaketak elkarren independenteak direnez gero, a posteriori banaketak ere
independenteak izango dira. Horretarako, (3.5) eta (3.6) ataletan emandako formulak erabiliko

ditugu. Hortaz, p|y11, ..., ¥n,1~N(m'y, (s'1)?)-ren eta p|y1z, ., Yn,2~N(m'5, (s'2)%)-ren
ondorengo banaketak ditugu. Orduan, p; = py — Uy-ren ondorengo banaketa normala da.

KalY11s o Yni1Y12 ---JYnZZ"'N(m,d' (Sld)z)
Nonm/'y =m'; —m'yeta (s'y)? = (s'1)? + (s',)%
4.3.1 Batezbestekoen diferentziarako sinesgarritasun-tarteak, bariantza desberdinak eta
ezagunak izanik

Baldintza horietan, (1 — a) * 100-eko sinesgarritasun-tarte bayestarra (4.1) eta (4.2) adierazpenen
bidez lortzen da.
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4.4 Bariantza desberdin ezezagunak dituzten bi banaketa normalen ausazko lagin
independenteak

Bariantzak desberdinak eta ezezagunak direnean, honela zenbatetsi behar dira datuetatik
abiatuta:

1 < 1 &
532 A2 R
— i;(}’n y1) y 02 = =1 i;(ylz ¥y2)

Zenbatesle horiek balio errealak baina ezezagunak balira bezala erabiliko dira eguneratze-
formuletan. Horrek ziurgabetasuna gaineratzen duenez gero, Studenten t banaketaren taula
erabili beharko da balio kritikoak kalkulatzeko. Kasu horretan, ez dago garbi erabili beharreko
askatasun-graduen kopurua zein den, baina honako balio hau biribiltzea gomendatzen da
(Satterthwaite):

52 =

)

n, Ny
(61/n)* | (67 /np)?
ny+1 n, +1

(4.6)

4.4.1 Batezbestekoen diferentziarako sinesgarritasun-tarteak, bariantza desberdinak eta
ezezagunak izanik

Berriz ere (4.5) eta (4.6) formulak erabiliz, honela lortzen da p; — u,-rako sinesgarritasun-tarte

bayestar hurbildua:
m'y —m'y + ta * ’(5’1)2 + (s',)%.
2

Non (4.6) adierazpena hurbilen dagoen zenbaki osora biribiltzen den askatasun-graduak
lortzeko. u,; eta u,-rako aldez aurretiko banaketa lau independenteak aukeratu direnean,
aurreko adierazpena honela berridatz daiteke:

m'y —m', + ta * 4.7)

N

4.4.2 Aldebakarreko hipotesi-test bayestarra

Hy: pg <0 versus H;p: pug >0 era bayestarrean o mailarekin kontrastatzeko, hipotesi
nuluaren ondorengo probabilitatea kalkulatzen da. Horretarako, (5.3) ekuazioa erabiliko dugu,
baina balio kritikoa normalaren taulatik lortu ordez, Studenten t banaketaren taulatik lortuko
dugu, Satterthwaitek proposatutako askatasun-graduekin. Probabilitatea a baino txikiagoa
bada, hipotesi nulua baztertu eta y; > u, ondorioztatzen da.
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4.5 Proportzioen diferentziarako inferentzia bayestarra hurbilketa normal baten
bidez

Demagun orain T; eta T, proportzioak konparatu nahi ditugula, sarrerako adibidean bezala.
Demagun, halaber, y|m; banaketek binomial(n;, m;) bati jarraitzen diotela eta elkarren
independenteak direla (i = 1,2 izanik). Dakigunez, haien aldez aurretiko banaketak
beta(a;,b;) banaketak badira, ondorengoak n; beta(a;,b;) banaketak izango dira, non
a; = a; +y; eta b; =b; +y; diren. Horrela, beraz, m; = m; — m, diferentziaren ondorengo
banaketa N(m'y, (s'4)?) normal baten bidez hurbil daiteke, non

acbe agby

ag a;
+ .
(a; +b2)?(a; +b;+1)  (aj +b)?(a; + b +1)

Tai+b: al+b;

!

mg

(s')? =

4.5.1 Proportzioen diferentziarako sinesgarritasun-tarteak

Ty = My — My-rako (1 — a) * 100%-eko sinesgarritasun-tarte bayestar hurbildua honela
lortzen da:

my+ Z% *s' . (4.8)

4.5.2 Aldebakarreko hipotesi-test bayestarra

Hy: my <0 versus Hy: my > 0 kontrastatu nahi baditugu, hipotesi nuluaren ondorengo
banaketa kalkulatuko dugu honela:

Mg — m'd 0-— m'd 0-— m'd
P(my < Oldatos) = P - < ; =P|{Z<——). (49
Sd Sd Sd

Probabilitatea a baino txikiagoa bada, hipotesi nulua baztertu eta m; > m, ondorioztatuko
dugu.

4.5.3 Aldebiko hipotesi-test bayestarra

Aitzitik, Hy: g = 0 versus Hi: Ty # 0 kontrastatu nahi baditugu, (4.8) ekuazioak emandako
sinesgarritasun-tartea aztertu beharko dugu. Oa tartean ez badago, hipotesi nulua baztertu eta
lagin bakoitzaren proportzioak desberdinak direla onartuko da.
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5. Kapitulua

5. Erregresio linealerako inferentzia bayestarra

Zenbaitetan, interesgarria izaten da bi aldagairen (x eta y) arteko erlazioa modelatzea.
Horretarako, iragartzen eta x-ek emandako informaziotik abiatzen lagunduko digun ekuazioa
bilatzen da.

Demagun n datu-bikotez osatutako datu-base bat dugula, hots, (x;,y;),i =1, ...,n. Lehenik
eta behin, komeni da scatterplot batean puntu guztiak marraztea, haien artean dagoen
erlazioa intuitzen saiatzeko. Puntuak modurik sinpleenean erlazionatzen dituen ekuazioa
y = ag + fx ekuazio lineala da. Ondoren, karratu txikienen metodoaz hitz egingo dugu. lzan
ere, metodo hori da erabiliena a; eta zenbatesteko. .

5.1 Karratu txikienak

Grafikoan, infinitu lerro marraz daitezke; batzuk ongi samar doituko dira puntuetara, eta beste
batzuk, berriz, ez hain ongi. Hondarra puntu baten eta erregresio-lerroaren arteko distantzia
bertikala da. Beraz, distantzia zenbat eta txikiagoa izan, orduan eta hobea izango da puntu
zehatz horrekiko doikuntza.

Karratu txikienen metodoa hondarren karratuen batura minimizatuko duen zuzena aurkitzean
eta oro har hobekien doitzen den zuzena lortzean datza.

5.1.1 Ekuazio normalak eta karratu txikienen zuzena

y = oy + Bx adierazpeneko hondarren karratuen batura honako hau da:

n

SSyes(@0,B) = ) [vi = (@ + Bx)]?. (5.

i=1

S$S,es Minimizatzen duten a, balioak eta f malda aurkitzeko, (6.1) ekuazioa a, eta [-rekiko
deribatu, haiek Orekin berdindu eta ekuazioen sistema ebazten da. Hau da,

35S~
—= 2l @+ (D=0
ay 4
=1
n n n
@Z%’ —Z“o —Zﬂxi =0
i=1 i=1 i=1
U
y—nay,—Bx=0 (52)
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Bestalde, B-rekiko deribatuz:

9SS~
35 = 2,20 @+ px)l (k) =0 =
i=1
n n n
= xi}’i—zaoxi—Zﬁxiz =0
i=1 i=1 i=1
U

Xy —agk —Px2 =0 (5.3)

(6.2) eta (6.3) ekuazioek ekuazio normalen sistema osatzen dute. (6.2) ekuaziotik abiatuta, a,
[B-ren arabera uzten da, eta (6.3) ekuazioan lortutako adierazpena aldatzen da.

Xy— (- pOxX—px2 =0
& Xy — yX + X — Bx2 =0
& p(xx —x2) =yx —xy
Hortaz, karratu txikienen maldak honako adierazpen hau dauka:

p=2"% (54

(xx — x2)
(6.2) ekuaziora itzuliz eta maldaren balioa aldatuz, honako hau dugu:
Ay =y—Bx (5.5)
Hortaz, karratu txikienen bidez lortutako zuzenay = A, + Bx da.
5.1.2 Karratu txikienen zuzenaren alternatiba

Maldak eta y interzeptuaren gaineko beste edozein puntuk ere zuzena finkatzeko aukera
ematen digute. Demagun Aj; karratu txikienen zuzenak -en zuzen bertikala mozten duen
puntua dela. x.

Af=A0+Bf:3_/

Hau da, karratu txikienen zuzena (X, y¥) puntutik igarotzen da, eta oso baliagarria izango zaigun
honako ekuazio hau lor daiteke:

y=Az;+B(x—x%X)=y+B(x —X%) (5.6)
5.1.3 Karratu txikienen zuzenaren inguruko bariantzaren estimazioa

Hona hemen karratu txikienen zuzenaren inguruko bariantzaren estimazioa:
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— 2
57 = iy — (A + B(x; — 0)]
n-—2

]

Beraz, hondarren karratuen batura da, n — 2-rekin zatitua, A; eta B-ren estimazioak
erabiltzearen ondorioz.

5.1.4 Adibidea

Enpresa batean, produktu bat salgai jartzen denean zer hezetasun-maila duen jakin nahi dute.
Dena dela, produktua burututa dagoenean ez da ekonomikoki bideragarria hezetasuna
neurtzea. Horregatik, hezetasuna produktua amaitu aurreko fasean neurtzea eta balio
horretatik abiatuta amaierako hezetasun-maila aurresatea pentsatu dute. Bildu diren 25
laginetan, x aldagaiak aldez aurretiko hezetasun-maila neurtzen du, eta y aldagaiak, berriz,
amaierako hezetasun-maila. Honako zenbakizko emaitza hauek lortu dira: X = 14.3888,

y = 14.2208, x2 = 207.0703, y? = 202.3186 eta xy = 204.6628.

Karratu txikienen erregresio-zuzena lortzeko, maldaren balioa behar dugu, eta honela lortzen
da:

Xy —Xy _ 204.6628 — 14.3888 * 14,2208
xZ — (%)° 207.0703 — (14.3888)*

= 1.29963.

Hortaz, karratu txikienen zuzena honako hau da: y = 14.2208 + 1.29963 * (x — 14.2208).

¥i = y+ B(x; — %) balio doituak, y —7y hondarrak eta haien karratuak (i =1,...,25
izanik) lortzen dira. Hortaz, karratu txikienen bidez zenbatetsitako bariantza eta desbiderapena
honako hauek dira:

n 52
62 = Lizm0iTI)” 0'8"213882 = 0.0348644 = & = +/0.034864 = 0.18672

n-2
5.2 Erregresio lineal sinplearen hipotesia

Karratu txikienen metodoa teknika ez-parametrikotzat hartzen da, ez baitu datuen banaketa
erabiltzen. Maldaren eta interzeptuaren balioan inferitzeko, hipotesi batzuk hartu behar dira.

Parametrizazio alternatiboa erabiliz gero, honako hau lortuko dugu:
yi=og+ B0 —%) +e,

non oz Yy-ren batez besteko balioa den (x = X izanik), eta § malda den. e; errore bakoitza
normal banatuta dago O batezbestekoarekin eta o2 bariantza ezagunarekin, eta erroreek
bariantza konstantea dute. Gainera, erroreak elkarren independenteak dira. Hortaz, y;|x;-k
banaketa normala dauka, oz + B(x; — X) batezbestekoarekin eta o2 bariantzarekin, eta y;|x;
guztiak elkarren independenteak dira (i = 1,..n izanik).

5.3 Bayesen teorema erregresio-eredurako
Bayesen teorema honela laburbil daiteke:

posterior « previa * verosimilitud,
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Horregatik, egiantza finkatu eta eredurako aldez aurretikoa erabaki behar da.
5.3.1  eta -ren baterako egiantza a;
i-garren behaketaren baterako egiantza haren dentsitate-funtzioa da, oz eta § parametroen

funtzio gisa ikusita, non (x;,y;) balio finkoak diren. Hortaz, parametrorik ez duen zatia alde
batera utzita, / behaketaren egiantza funtzio honen bidez lortzen da: L:

L;(az, B) e_%[Yi_(ai+B(xi_i))]2
l X’

Behaketak elkarren independenteak direnez gero, lagin osoaren egiantza behaketa guztien
egiantzen biderkadura da.

1 <\\12
Lmuestra(a)‘(: B) x 1_[ e—m[yi—(otg+8(xi—x))] .

Esponentzialaren propietateak aplikatuz gero,

Liyestra(0z, B) e_%mil[yi_(“ﬂ B(xi_’_‘))]z].

Kako zuzenen arteko adierazpena honela berridatz daiteke:

D Iy = (aseBCi =D = ) [y =7+ = (o5 + B = D)]°]
i=1 i=1

l L

=

D 0=’ +2) 0i = 7T — (ag+ Bl — D)) + ) (7= (o + Blx = D))
i=1 i=1 i=1

SSy = X 1(Vi = ¥)% SSxy = Xie1(yi — ¥)(x; — X) eta SS, = X1 (x; — X)? hartuta, aurreko
adierazpena honela sinplifikatzen da:

88y — 2BSSyy + B2SS, + n(az — 7).

Hortaz, baterako egiantza honela idatz daiteke:

1
Limyestra(0g, B) < e 207

1 1 _
Lyestra (0 B) € e—W[SSy—ZBSSxﬁ B25S,]] . e“W["(“J’C‘Y)Z]
) .

[SSy—2BSSxy+B2SSy+n(az—7)?]
)

Lehen gaian SS, faktore komun gisa ateratzen, biderkadura nabarmenaren formulak
aplikatzen eta ezein parametroren mende ez dauden gaiak alde batera uzten baditugu,

1 SSx 1 -
B) < e_ZO'Z/SSx[ - SS;] % e_zo-Z/n[(af_y)Z].

Lmuestra (O()?:
SS
Kontuan hartu behar da S;y

X

(karratu txikienen bidez zenbatetsitako interzeptua x = X lerro bertikalean). Hortaz, bi
egiantzen biderkaduraren bidez lortzen da baterako egiantza:

= B dela (karratu txikienen bidez lortutako malda), eta y = A;
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Lmuestra ((X)—(, B) X Lmuestra ((X)‘() * Lmuestra( B)'

Non

[8- B] [(ax—4%)?]

1 1
Lnyestra(0g) < e 20%/55x eta Lyyestra(B) < e 29%/n )

Baterako egiantza bi egiantz independenteren biderkadurarekin faktorizatu da, eta, beraz,
egiantz indibidualak independenteak dira. lkus daitekeenez, f maldaren egiantza B
batezbestekoa eta 202 /SS, bariantza dituen normal bat da, eta ag-ren egiantza normala da,
Az batezbestekoarekin eta o2 /n bariantzarekin.

5.3.2 3 eta -ren aldez aurretiko baterako banaketa o

Baterako egiantza baterako aldez aurretikoarekin biderkatzen bada, biderkadura ondorengo
baterakoaren proportzionala izango da. Aldez aurretiko baterakoa bi aldez aurretiko
independente eta indibidualen arteko biderkadura da, eta bi aldez aurretiko horiek normalak
edo lauak izan daitezke.

g(ag, B) = glag) * g(B),
5.3.2.1 Aldez aurretiko normala

agz-rako aldez aurretiko batezbestekoa honela lortzen da: M- Ondoren, y,-k har ditzakeen
balio maximoa eta minimoa hartuko dira, eta Soy aldez aurretiko desbiderapena bi balio horien
diferentzia 6rekin zatituta lortuko da.

Malda nulua izan daitekeela kontuan hartuta, B-ren aldez aurretiko batezbestekoa mg = 0. dela
finkatzen da. Arestian azaldutako prozedura erabiliz, sg kalkulatuko litzateke, eta gure aldez
aurretiko ezagutza honela adieraziko litzateke: N (mg, sé).

5.3.3 3 eta -ren ondorengo baterako banaketa o;

Ondorengo baterako banaketa aldez aurretiko banaketaren eta baterako egiantzaren
biderkaduraren proportzionala da.

g(ag, Bldata) < g(ax, B) * Lyyestra (0, B),

Adierazpen horretan, (x1,¥1), ..., (X, ¥n) bikote ordenatuen multzoa da data. Ondorengo
marjinalak erabiliz gero, honela berridatz dezakegu ekuazioa:

g(og, Bldata) « g(agz|data) * g(fB|data).

Ondorengo marjinal bakoitza banaketa normaletarako eguneratze-arauen bidez lor daiteke. Are

gehiago, B-rako N(mB,Sé) aldez aurretiko banaketa batetik abiatuta, N(m'g, (S’B)Z) ondorengo
banaketa lortuko dugu, non

1 _1,8% oo
A A
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= S5y
l SB 0'2
meg=-—7 *mg + 1 * B (5.8)

(sp)’ (s's)’

Ondorengo zehaztasuna aldez aurretiko zehaztasunaren eta egiantzaren zehaztasunaren arteko
baturaren baliokidea da. Ondorengo batezbestekoa aldez aurretiko batezbestekoaren eta
egiantzaren batezbestekoaren haztapen bat da, ondorengo zehaztasunaren proportzionalak diren
zehaztasun-pisuekin. Hortaz, ondorengo banaketa ere normala da. agz-rako N(max,soztx) aldez

2
aurretiko banaketa batetik abiatuta, N (m’,., (s’a,) ) ondorengo banaketa lortuko dugu, non
X X

1 1SS,
oy e O
ax X
1 n
s&. i
m'y = ;X * My + 01 * Ag (5.10)

5.3.4 Adibidea (jarraipena)

Aurreko enpresako estatistikariak erabaki du N (1, (0.3)?) bat erabiltzea -ren aldez aurretiko gisa,
eta N(15,12) bat ag-ren aldez aurretiko gisa. Bariantza erreala ezezaguna denez gero, karratu
txikienen bidez lortutako estimazioa erabiliko du: 62 = 0.0348644.

Kontuan hartu behar da  §S, = Y™ ,(x; — %)% = n(x? — ¥2) = 25 * (207.0703 — 14.38882) =
0.81886 dela. Hortaz, -ren ondorengo zehaztasuna eta bariantza eta ondorengo batezbestekoa
honako hauek dira:

1 1 0.811886

(s'p)” =93 T oo3aseas — S+5981 = s’ =10.17001.
1 0.81886
, 0.32 0.0348644
= 1 1.29963 = 1.2034.
™8 =325081 T 345981

Era berean, agz-ren ondorengo balioak lortuko ditugu:

1 1 25 .
—(S,ag)z = 1T Sosasers — 718.064 = s',_ = 0.037318.
1 25
' 12 0.0348644
% 15 4+ == 2CORR 4 14,2208 = 14.2219.
Ma = 718064 > " 718.064

Ondorengo grafikoan, maldaren aldez aurretiko eta ondorengo banaketak ditugu.
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Maldaren banaketak

—Aldez aurretikoa
Ondorengoa
J
T T T T T
0.0 05 1.0 15 2.0

5.3.4 Maldarako sinesgarritasun-tartea

[B-ren ondorengo banaketak datuak behatu ondoren dugun ezagutza adierazten du. [3,-rako
sinesgarritasun-tarte bayestar bat lortu nahi bada, honela adieraziko da:

m'p + za /(5’3)2 (5.11)

Hala ere, errealistagoa da pentsatzea ezezaguna izango dela o -ren balioa. Hondarretatik abiatuta,
honako estimazio hau egin daiteke:

52 = L1 — (Ag + B(x; — 0)))?
n—2 '

Ziurgabetasun-maila handiagoa denez gero, tarteak zabalagoa izan behar du. Horretarako,
estatistiko normalaren balio kritikoaren ordez, Studenten t banaketarena erabiliko dugu, n — 2
askatasun-gradurekin. Hortaz, tarteak honako adierazpen hau izango du:

mp £ ta (s)” (512

5.3.5 Maldarako aldebakarreko kontrastea

Askotan, x-eko unitate bateko gehikuntzari lotutako y -ko gehikuntza S, balio jakin bat baino
handiagoa den jakin nahi izaten da. Horretarako, honako hipotesi hauek planteatzen dira:

Ho: B < Bo vs. Hi: B> B

Hipotesiak era bayestarrean eta a mailan testatzeko, hipotesi nuluaren ondorengo probabilitatea
kalkulatzen da:
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Bo —m'
P(B < B,|data) = j g(Bldata)dp = P <z < %) (5.13)

Probabilitate hori a baino txikiagoa bada, hipotesi nulua baztertu egiten da. Bariantza zenbatetsi
behar izatekotan, Z normalaren ordez Studenten t banaketa erabili beharko da, n — 2 askatasun-
gradurekin.

5.3.6 Maldarako aldebiko kontrastea

Baldin eta B = 0 bada, y-ren batezbestekoa ez dago x-en mende. Beraz, interesgarriada Hy: § = 0
vs. Hy: B # 0 hipotesiak era bayestarrean eta a esangura-mailarekin kontrastatzea aurresateak
egiteko erregresio-eredua erabili aurretik. Horretarako, O balioa sinesgarritasun-tartean ote dagoen
egiaztatu behar da. Tarte horretan ez badago, hipotesi nulua baztertu egiten da, eta egokia da
erregresioa eredu aurresale gisa erabiltzea.

5.4 Etorkizuneko behaketetarako banaketa aurresaleak

Erregresio linealaren helburu nagusietako bat y,,; balioa aurresatea da, x,.; aldagai
azaltzailearen balioa emanik eta mendeko aldagaiaren eta aldagai azaltzailearen artean
benetako erlazio lineal bat dagoela egiaztatu ondoren. Hortaz, y,,1-en aurresaterik onena,
Xn+1 €manik, honako hau izango da:

Ine1 = Az + ﬁ(xn+1 — X),

Adierazpen horretan, [ zenbatetsitako malda da, eta d@g berriz, x =X zuzenaren
interzeptuaren estimazioa.

Aurresatearen egokitasunari dagokionez, bi ziurgabetasun-puntu daude. Lehenik eta behin,
balio erreal baina ezezagunaren ordez bi balioren estimazioa erabili da aurresatea egiteko.
Parametroak ausazko aldagaiak direla eta haien ondorengo banaketa aurreko sekzioan lortu
dela suposatzen da. Gainera, y,,1 behaketa berriak bere errore propioa dauka, eta aurreko
erroreekiko independentea izango da. y,,,1-en banaketa aurresalea, x, ., eta datuak emanik,
Bayesen teorema aplikatuta lortzen da, eta honela adierazten da: f(y,41|%n+1, data).

5.4.1 Banaketa aurresalea

Banaketa aurresalea honako integral honetatik abiatuta lortzen da:

f sl tns1, data) = f f FOmars e, Blxnsr, data)dazdp.

Lehenik eta behin, parametroen eta hurrengo behaketaren ondorengo baterakoa finkatu
behar da, x,, 4, balioa eta datuak emanik:

In+1 @g Blxnsr, data) = f(Yniilag, B, Xn41, data) * g(ag, Blxn41, data).

Hurrengo y,,, behaketa, az eta f parametroak eta x,,;-en balioa emanik, erregresio-
ereduarekin lortutako ausazko aldagai berri bat da. az eta [ emanik, behaketa guztiak
elkarren independenteak dira. Hau da, parametroak emanik, behaketa berria ez dago aldez
aurretiko aurresateez osatutako datuen mende. Behaketa berriaren eta parametroen baterako
banaketa honela sinplifikatzen da:
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fOn+1 @z Bl¥nir, data) = f(Yni1|az B, ¥ni1) * g(ax, Bldata)

Hartutako hipotesien arabera, hurrengo behaketa normal bat bezala banatzen da, y,.1 =
@z + B(xn41 — X) batezbestekoarekin eta o2 bariantza ezagunarekin. Parametroen
ondorengo banaketak, aurreko sekzioan ikusitako eguneratze-arauetatik abiatuta lortutako
aldez aurretiko datuak emanik, N(m',,, (s’a)_c)z) eta N(m'g, (s’ﬁ)z) dira, independenteak.
Behaketa berria 41 = az + B(x,41 — X), funtzio linealaren bitartez soilik dago parametroen
mende, eta, beraz, arazoa sinplifikatu egin daiteke. aj; eta f independenteak direnez gero,
Hn+1-en  ondorengo banaketa normala izango da, m', =m' + (Xpe —X) xmp

2 2 2
batezbestekoarekin eta (s',)” = (s'¢,)” + (Xn41 — ¥)* * (s'5) " bariantzarekin.

Banaketa aurresalea lortzeko, p,41-en marjinalizazioa erabiliko dugu y,,; eta p,;1-en
ondorengo baterakoaren bidez.

f Wn+1lxni1,data) = ff(yn+1,,un+1|xn+1,data)d,unﬂ
= ff(}’n+1|l1n+1:xn+1'data) * g(Un+1lXn+1, data)di, 4

= ff(}’n+1|l1n+1) * g(Uns1|Xn1, data)dpy 41

1
(#n+1—m’u)2

_1 _ 2 - 2z
ocfe 20—2(3’n+1 Bn+1) e 2(5’#) dun+1
2 2
) Yn+1(s' ) +m'uaz>
7| Un+1 P
202(s',)° \ 02+(s'y) N S
a2+(s’ )2 2((5’ )2""’2) A
< |e p * e # din i1

Bigarren faktorea ez dago p,,,1-en mende, eta, lehenengoaren integrala sinplifikatuz gero,

1 2
_,72(%”1—771 )
f ns1lxns1,data) e 2((s') " +0?)

Hortaz, N(m',, (s’y)z) bat dugu, nonm’,, = m’, eta (s’y)z = ((s’u)2 + 02) den.
5.4.2 Aurresateko sinesgarritasun-tarteak

Interesgarria izaten da y,,,1 balioa edukitzeko 1 — a-ko ondorengo probabilitatea duen tarte

2
bat bilatzea, x,,; balioan behatuta. Aurresatearen m', batezbestekotik eta (s’y)
bariantzatik abiatuta, sinesgarritasun-tartea honela lortzen da:

, 2
! o ! ! 2
myiz%*sy—muiZ%* (Su) + 0o

2 2
= m’ay + (Xp1 — %) * mlﬁ + Z% i \/(S’ax) + (g1 — )% (Slﬁ) + 02,

behaketaren o2 bariantza ezaguna denean. Bariantza ezezaguna delako zenbatetsi behar bada,
berriz,
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2
m'y ttaxs', =t', +zax* /(s’ﬂ) + 02
2 2

2 2
= i Cons = D)y &t [(57)” F G = 22 (57)" 4

non balio kritikoa Studenten t banaketaren bidez lortzen den, n — 2 askatasun-gradurekin.
Kasu horretan, tarte bayestarrak eta frekuentistak berdinak dira.

5.4.3 Adibidea (jarraipena)

Bitarteko mailaren (x) araberako amaierako hezetasun-mailaren (y) banaketa aurresalea
kalkulatzen da. Banaketa aurresalearen batezbestekoa eta bariantza honako hauek dira:

m', = 14.2219 + 1.2034(x — 14.3888),

(s'y)2 = 0.0348644 + 0.0373182 + 0.170012 = (x — 14.3888)2.

Hortaz, 95%eko sinesgarritasun-tartea (m',, — tg o5 * 'y, m'y, + tg 025 * s'y) da. Ondorengo
grafikoan, batezbestekoa eta % 95eko tarte bayestarra daude irudikatuta.

Batezbesteko aurresalea, beheko eta goiko mugekin

Goiko muga %95ean \d
Beheko muga %95ean .
Batezbestekoa ’
e«e Limte superiof al 95% °
eee Limie infenor alS95% M

— edia X -

145
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6. Kapitulua

6. Simulazio bidezko adibideak

Kapitulu honetan, ausazko lagin estratifikatu batean aplikatuko dugu landutako teoria, eta,
ondoren, lortutako emaitzak aztertuko ditugu. Lehenik eta behin, batezbesteko normal baten
estimazio estratifikatuarekin lan egingo dugu, eta, ondoren, proportzio baten estimazio
estratifikatuarekin. Bi adibideetan, egiantzeko hainbat egoera adieraziko dituzten datu
simulatuekin lan egingo dugu.

FEx 1: stratified random sampling
Sample  Population

» Population divided into ./ swraw - il

« Zas sct of stratum indicators

| b vt 7oas e straluamn /

O, otherwisg

« Suatulicd random samphng: simple random sample
of »n, unuts selected rom population of V. units in
stratum J
= This design s ignorable providing modce! for

outcomes conditions on the suaamm variables 7

6.1 Adibidea batezbesteko normal batekin

Demagun N tamainako populazio batetik hartutako n tamainako ausazko lagin bat dugula eta
ezaugarri jakin baten balioa neurtu nahi dugula. Laginaren behaketak bi estratutan banatuta
daude, eta estratu bakoitza z = (z;,z,) bektore dikotomikoaren bidez adierazten da, non
zj = lek adierazten duen behaketa j estratukoa dela, j {1,2}. izanik. Kasu horretan, alde
batetik n; = 250 eta n, = 150 (n = 400) dugu, eta, bestetik, N; = 5000 eta N, = 3000
(N = 8000). Helburua estratu bakoitzeko Y aldagaiaren a posteriori batezbestekoa eta
aldagaiaren guztizko batezbestekoa aurkitzea izango da.

Demagun, halaber, aurreko azterlanei erreparatuz badakigula Y aldagaia normal banatuta
dagoela estratu bakoitzean, eta estratu bakoitzaren batezbestekoak lehen estratuan 30eko
batezbestekoa eta 0.5eko bariantza, eta bigarrenean 300eko batezbestekoa eta 10eko
bariantza dituen normal bati jarraitzen diola. Y-ren bariantzari buruzko informaziorik ez dugu.

Hortaz, z = (1,0) betetzen duten behaketei (lehen estratukoei) dagokienez, pentsa dezakegu
Y; ~N(mu, tau) dela (non tau bariantzaren alderantzizkoa den) eta, era berean, mu~N(30, 0—15)

dela. Aldez aurretiko bariantzari buruzko a priori informaziorik ez dugunez gero,
informaziozkoa ez den aldez aurretiko bat esleituko diogu tau-ri: adibidez,
tau~Ga(0.001,0.001). Aldez aurretikoari indar handiagoa eman nahi badiogu, bariantza

txikiagotu dezakegu. Adibidez, pentsa liteke mu~N(30,$) dela.
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Aldez aurretiko banaketa finkatu ondoren, behatutako datuek ematen diguten informazioa
ikusi beharko litzateke. Adibide honetarako, lehen estratuko 250 behaketak simulatu ditugu —

N(27, %) banaketa bati jarraitzen diotela suposatuta—, eta 27.05eko lagin-batezbestekoa lortu
dugu, 4.63ko bariantzarekin.

Hirugarren eta azken urratsa a posteriori banaketa lortzea izango da. Eskura ditugun datuekin
eguneratze-araurik erabili ezin denez gero, ondorengo banaketa simulatuko dugu MCMC
metodoen bidez. Horretarako, WinBUGS programa erabiliko dugu, R-tik deituta. Erabilitako
kodea I. Eranskinean agertzen da.

Ondorengo grafikoetan, proposatutako bi aldez aurretikoetarako lortutako banaketak ditugu:

yi1-en banaketak, informaziozko aldez aurretiko y1-en banaketak, informazio handiagoko aldez
batekin eta n=250 izanik aurretiko batekin eta n=250 izanik
o o
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Estimazio puntual gisa, a posteriori batezbestekoa erabiliko dugu: y;,;=27.16 eta
V1.2 = 28.86. Lehen kasuan, a posteriori batezbestekoa laginaren batezbestekotik oso hurbil
dago. Horrek esan nahi du aldez aurretikoak ia ez duela garrantzirik eta 250 behaketaren
informazioarekin osatutako egiantzak baino askoz pisu txikiagoa duela. Bigarren kasuan, a
posteriori batezbestekoa laginaren batezbestekoaren eta a priori batezbestekoaren erdialdean
dago. Informazio handiagoko aldez aurretiko bat ezarri denez gero, pisu handiagoa ematen
zaio, eta egiantzaren bidez lortutako informazioa bezain garrantzitsua da.

Demagun orain laginaren tamaina 250 behaketatik 25era murrizten dugula eta datuak N(27,§)

banaketa bera erabiliz simulatzen ditugula; laginaren batezbestekoa 27.38 izango da, eta bariantza,
berriz, 4.51.

Arestian mu, mu~N(30,0—15) eta mu~N(30,$)—rako proposatutako bi aldez aurretikoak

erabiltzen baditugu, honako grafiko hauek lortuko ditugu:
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yl1-en banaketa, informaziozko aldez aurretiko y1-en banaketa, informazio handiagoko aldez
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Kasu horretan, a posteriori banaketak zein a posteriori batezbestekoaren estimazio puntualak
(y1.4 = 28.15 eta y;, = 29.88,) laginaren tamaina handiagoa zenean lortutakoenen desberdin
samarrak dira. Aldez aurretiko lehenarekin, aldez aurretiko batezbestekoaren eta laginaren
batezbestekoaren artean dagoen estimazio bat lortzen da. Horrek esan nahi du aukeratutako aldez
aurretikoak eta egiantzak antzeko garrantzia dutela eta, laginaren tamaina murriztu izanaren
ondorioz, aldez aurretiko ezagutza erabiltzen dela emaitza eguneratuak lortzeko. Bigarren kasuan,
balio berean zentratuta dagoen, baina bariantza txikiagoa duen aldez aurretiko bat erabiltzen da. A
posteriori batezbestekoaren estimazioa a priori batezbestekotik oso hurbil dago; izan ere, lagin-datu
gutxi (n=25) daudenez eta aldez aurretikoa oso sendoa denez gero, egiantza ez da kontuan hartzen,
eta ia aldez aurretiko banaketaren informazioa baino ez da erabiltzen estimazioa egiteko.

Bestalde, afldez aurretiko lau bat erabiliko bagenu (mu~N(O,ﬁ), adibidez), indar guztia

egiantzari emango genioke, aldez aurretiko ezagutzarik gabe informazio-iturri bakarra behatutako
datuak izango bailirateke. Laginaren tamaina 250 zenean, mu~N(30,%) aldez aurretikoak aldez

aurretiko lau batek bezala jokatzen zuen ia, datu kopuru handia erabiltzen zenez gero aldez
aurretikoak ez baitzuen garrantzirik. Grafikoan ikus dezakegunez, a posteriori banaketa eta egiantza
balio berean zentratuta daude ia, eta a posteriori batezbestekoaren estimazio puntuala y; 3 =
27.33 da.

yi-en banaketa, aldez aurretiko lau batekin eta

n=25 izanik
o
«
uw
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z = (0,1) denean (bigarren estratua), esan dezakegu Y~N(mu,tau) eta mu~N(310,%)

direla. Aldez aurretiko bariantzari buruzko a priori informaziorik ez dugunez gero,

informaziozkoa ez den aldez aurretiko bat esleituko diogu tau-ri: adibidez,

tau~Ga(0.001,0.001). Aldez aurretikoari indar handiagoa eman nahi badiogu, bariantza
1

txikiagotu dezakegu. Adibidez, pentsa liteke mu~N(310, 5 5) dela.

Hurrengo urratsa behatutako datuek ematen diguten informazioa ikustea da. Adibide
honetarako, lehen estratuan ditugun 150 behaketak simulatu ditugu, N(300,4—10) banaketari
jarraitzen diotela suposatuta, eta 300.14 lagin-batezbestekoa lortu dugu, 32.70 bariantzarekin.

Hirugarren eta azken urratsa a posteriori banaketa lortzea izango da. Berriz ere WinBUGS
programa erabiliko dugu, R-tik deituta. Hurrengo grafikoetan, proposatutako bi aldez
aurretikoetarako lortutako banaketak agertzen dira:

Distribuciones de y, con una previa informativa y n=150 Distribucién de y; con una previa mas informativa y n=150
© ©
e " Previa & " Previa
= Veros = Veros
o o
o o
®  Postenor H ®  Postenor
- -
o o
™ ™
o o
o o

Estimazio puntual gisa, a posteriori batezbestekoa erabiliko dugu: u,; =300.37 eta
Uz » = 303.99. Arestian aipatu dugun efektu bera gertatzen da, hau da, datu ugarirekin
behatzean egiantzak pisu handia duela. Laginaren datuei indarra kentzeko, informazio handiko
aldez aurretiko bat beharko litzateke. Era horretan, aldez aurretiko lehenak aldez aurretiko lau
batek bezala jokatzen du ia, eta bigarrenak egiantzaren antzeko garrantzia dauka.

Behatutako datuen lagin-tamainaren eragina hobeto ikusteko, demagun orain laginaren tamaina
150 behaketatik 15era murrizten dugula eta datuak N(300,i) banaketa bera erabiliz simulatzen
ditugula. Kasu horretan, laginaren batezbestekoa 300.64 izango da, eta bariantza, berriz, 41.42.

Arestian mu, mu~N(310,1—10) eta mu~N(310,0—15)—rako proposatutako aldez aurretiko biak
erabiltzen baditugu, honako grafiko hauek lortuko ditugu:
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Berriz ere, a posteriori banaketak eta a posteriori batezbestekoaren estimazio puntualak
(y2.1 = 303.04 eta y, , = 309.44) laginaren tamaina handiagoa zenean lortutakoenen desberdin
samarrak dira. Aldez aurretiko lehenarekin, aldez aurretiko batezbestekoaren eta laginaren
batezbestekoaren artean dagoen estimazio bat lortzen da. Hau da, kasu horretan, aldez aurretikoak
eragina du amaierako a posteriori banaketan. Bigarren kasuan, balio berean zentratuta dagoen,
baina bariantza txikiagoa duen aldez aurretiko bat erabiltzen da. Aldez aurretiko eta ondorengo
banaketak zertxobait desberdinak dira, ditugun datu urriek (n=15) informazio gutxi ematen baitute.

Azkenik, aldez aurretiko lau bat erabiliko bagenu (mu~N (0, ﬁ), adibidez), indar guztia egiantzari

emango genioke, aldez aurretiko ezagutzarik gabe informazio-iturri bakarra behatutako datuak
izango bailirateke (gutxi izanik ere). Laginaren tamaina 150 zenean, mu~N(310, %0) aldez
aurretikoak aldez aurretiko lau batek bezala jokatzen zuen ia, datu kopuru handia erabiltzen zenez
gero aldez aurretikoak ez baitzuen garrantzirik. Grafikoan ikus dezakegunez, a posteriori banaketa
eta egiantza balio berean zentratuta daude ia, eta a posteriori batezbestekoaren estimazio puntuala
V,.3 = 300.63 da.

y>-ren banaketa, aldez aurretiko lau batekin eta

n=15 izanik
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Estratu bakoitzerako emaitzak lortu ondoren, guztizko a posteriori batezbestekoa lortzea izango da
helburua. Horretarako, batezbesteko haztatu bat erabiliko da. Lehen eta bigarren estratuen
populazio-tamainak 5.000 eta 8.000 unitate dira hurrenez hurren. Horrela, beraz, taulan agertzen
diren datuak lortuko dira.

A 5, y
Informazio 5000 = 27.16 + 3000 * 300.15
27.16 300.15
aldez
n1= 250 | aurretikoa
n,= 150 | Informazio 5000 * 28.86 + 3000 * 303.99
28.86 303.99
aldez
aurretikoa
Informazio 5000 * 28.15 4+ 3000 * 303.04
gutxiko 8000 =131.23
28.15 303.04
aldez
aurretikoa
n,= 25 Lr;?é’irﬂszm 5000 = 29.88 + 3000 = 309.44 — 13472
n,= 15 aldez 29.88 309.44 8000
aurretikoa
Aldez 5000 * 27.36 + 3000 * 300.63
aurretiko 27.36 300.63 8000 = 129.84
laua

Adibide horiekin, agerian geratzen da aldez aurretiko ezagutza askoz garrantzitsuagoa dela laginaren
tamaina txikia denean eta informazio gehigarriarekin osatu behar denean. Normalean, aldez
aurretiko informazioarekin erabat konbentzituta gaudenean izan ezik, ez da komeni bariantza
gehiegi murriztea, horrek eragin negatiboa izan baitezake emaitzetan.

6.2 Adibidea proportzio batekin

Demagun N;j, j € {1,2} tamainako populazio batetik hartutako n; tamainako ausazko beste bi
lagin ditugula. Aurreko kasuan bezala, i behaketa bakoitzari dagokion estratua z = (z4,2;)
bektore dikotomikoaren bidez adierazten da, non z; = lek adierazten duen behaketa hori j
estratukoa dela. Azkenik, ezaugarri jakin baten presentzia neurtzen da, non

_ {1 presencia de la variable y en la observacion i
Yi 0 ausencia de la variable y en la observacion i

Gure kasuan, alde batetik n; = 50 eta n, = 30 (n = 80) dira, eta, bestetik, N; = 500
eta N, = 300 (N = 800). Helburua y ezaugarria estratu bakoitzean zer proportziotan dagoen
eta guztizkoan zer proportziotan dagoen jakitea da.

Estatistika bayestarraren zailtasunetako bat aldez aurretiko ezagutza probabilitate-
banaketa baten bidez adieraztea da. Izan ere, era askotara egin daiteke, eta aukera asko eta
asko daude. 2. kapituluan ikusi dugunez, proportzioekin lan egiten denean komeni da beta
familiako banaketa bat erabiltzea. Beta banaketa banaketa konjugatua da, hau da, ondorengo
banaketak beta banaketa bat izaten jarraitzen du, eta eguneratze-sistema sinplea da.
Horrelako banaketa bat a eta b parametroek osatzen dute, eta, ikusi dugunez:
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on = Mo (1 — 1)
lo‘ (@a+b+1)

Bestalde, komeni da, halaber, aldez aurretikoaren lagin-tamaina baliokidea kalkulatzea.

. . ~ . . 1- . .
Binomial(n, ) baten T =§ proportzioak honako bariantza hau du: @ Bariantza hori
aldez aurretiko bariantzarekin berdinduz (a priori batezbestekoaren bidez):

Mo (1 — 1) ab
Neq “(@a+b)2(@a+b+1)°

a b . . L.
= Toeta = 1 —m, denez gero, lagin-tamaina baliokidea noq = a + b + 1 da. Hau da,

aukeratu dugun banaketak ematen duen informazio kantitatea tamaina horretako ausazko
lagin baten baliokidea da.

Aurretik egindako azterlan batzuetatik, badugu informazioren bat y-k estratu bakoitzean duen
presentziaren inguruan. Demagun z = (1,0) betetzen duten behaketen kasuan (1. estratua)
badakigula 50 indibiduoko lagin-tamaina batean oinarrituta arrakastaren proportzioa 0.3 dela.
Era horretan, Beta(14.7, 34.3) aldez aurretiko bat lortuko genuke. Proportzioak 0.2 eta 0.4
balioen artean % 95eko konfiantza estatistikoa badu, berriz, beharrezkoak diren ekuazioak
bakandu ondoren Beta(24.9,58.1) bat izango dugu, 84 behaketaren baliokidea den lagin-
tamaina batekin. Azkenik, p-ren balioari buruzko aldez aurretiko informaziorik ez bagenu,
Beta(1,1) banaketa bat erabil genezake, banaketa Uniforme[0,1] baten baliokidea; horrek
esan nahiko luke p-ren balio guztiak probabilitate berekoak direla.

Aldez aurretiko banaketa finkatu ondoren, behatutako datuek ematen diguten informazioa
ikusi beharko litzateke. Adibide honetarako, lehen estratuko n; = 50 behaketak simulatu
ditugu banaketa Binomial(0.25,50) bat erabiliz, eta aldagaiaren 10 presentzia eta 40
absentzia lortu ditugu. Hortaz, behatutako probabilitatea p=0,2 da.

Hirugarren eta azken urratsa a posteriori banaketa lortzea izango da. Aurreko kapituluetan
adierazi dugunez, beta banaketa konjugatua da, eta formula sinple baten bidez lortzen da a
posteriori banaketa (beta banaketa hura ere). Aldez aurretiko banaketa Beta(a,b) bat bada eta
behatutako datuen arabera y=10 eta n=50 bada, a posteriori Beta(a’,b”) banaketa bat
lortuko da, non a’=a+10 eta b’=b+50-10 den.

Ondorengo grafikoetan, aukeratutako aldez aurretikoaren arabera lortutako banaketak ditugu.
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Aldez aurretiko ezagutza: p=0.3 n=50 Aldez aurretiko ezagutza: 1€%95=(0.2,0.4)

=]
o
o
@
= Aldez aurretikoa
© » Aldez aurretikoa
" Egiantza ©
* Egiantza
o * Ondorengoa
i * Ondorengoa
D o~
o o -
0.0 0.2 04 08 08 10 0.0 0.2 0.4 08 08 10
P11 Pi2

Aldez aurretiko ezagutzarik gabe

o |
=<
s Aldez aurretikoa
© 4
Egiantza
= Ondorengoa
™ \
Ll =3 N
0.0 0.2 0.4 08 08 1.0
P13

Estimazio puntual gisa, a posteriori batezbestekoa erabiliko dugu:
p1.1=0.2495 pl1.2=0.2624 p1.3=0.2115

Lehen bi behaketen artean ez dago hain alde handirik, bi kasuetan antzeko a priori bat
baitzegoen. Aldez aurretiko horrek adierazten zuen p-ren balioa 0.3tik hurbil zegoela;
egiantzak, aldiz, 0.2tik hurbil zegoela adierazten zigun. Azkenik, bi informazio-iturriak kontuan
hartzean, bitarteko balio bat lortzen da. Hala ere, lehen kasuan balioa txikixeagoa da, aldez
aurretikoak behaketa kopuru txikiagoa baitzuen. Hirugarren kasuan, berriz, aldez aurretiko
ezagutzarik ez genuenez gero, a posteriori batezbestekoa datuetan behatutakoaren oso
antzekoa da.

Bigarrenik, demagun z = (0,1) betetzen duten behaketei (2. estratua) buruzko aldez aurretiko
informazioa ere badugula. Jakin dezakegu 35 behaketako lagin-tamaina batean oinarrituta
proportzioak 0.2 batezbestekoa duela, edota probabilitateak % 95eko konfiantza estatistikoa
duela 0.1 eta 0.3 balioen artean. Azkenik, aldez aurretiko informaziorik gabeko kasua dugu.
Arestian adierazitako formulak erabiliz, Beta(6.8, 27.2) bat lortzen da lehen kasurako,
Beta(12.6, 50.4) bat (63ren tamaina baliokidea) bigarren kasurako, eta aldez aurretiko
Beta(1,1) laua hirugarren kasurako.
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Behatutako datuak simulatu ditugu, eta 30 behaketatik 3k dute ezaugarria; hau da, p=0.1.
Ondoren, eguneratze-formulak erabiliz, irudian ikus ditzakegun a posteriori banaketak
kalkulatu ditugu.

Aldez aurretiko ezagutza: p=0.2 n=35 Aldez aurretiko ezagutza: 1C%95=(0.1,0.3)
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Estimazio puntual gisa, a posteriori batezbestekoa erabiliko dugu:
p2.1=0.1531 p2.2=0.1677 p2.3=0.125

Aurreko kasuan bezala, lehen bi a posteriori proportzioak elkarren antzekoak dira, sartutako
aldez aurretiko informazioa balio berean zentratuta baitzegoen. Hala ere, ikus daitekeenez,
bigarrenak indar handiagoa zuen. Bi balioak aldez aurretiko informazioaren eta
behatutakoaren artean daude. Hirugarren kasuan, aldez aurretiko informazio asko ez
dagoenez gero, a posteriori proportzioak egiantzaren antzeko balio bat hartu du.

Azkenik, ondorengo taulan ikus daitekeenez, laginketa estratifikatu sinple batekin lan egitean
beharrezkoa da lortutako estimazioak haztatzea, proportzioaren estimazio globala lortzeko.
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Informaziozko aldez aurretikoa, 500 % 0.2495 + 300 % 0.1531

aldez aurretiko ezagutza 0.2495 | 0.1531 800 = 0.2134
urriarekin

Informazio handiko aldez 500 * 0.2624 + 300 = 0.1677
aurretikoa, aldez aurretiko 0.2624 0.1677 800 = 0.2269
ezagutza handi samarrarekin

Aldez aurretiko laua, aldez 500 = 0.2115 + 300 = 0.125

aurretiko ezagutzarik gabe 0.2115 0.125 300 =0.1791

Emaitza globaletan gehiegizko alderik ez badago ere, garbi dago aldez aurretikoaren
aukeraketa garrantzitsua dela eta emaitzetan aldaketak eragin ditzakeela.

6.3 Emaitzak

Deskribatutako adibideetan ikusi dugunez, ondorio intuitiboak eta naturalak lortzeko eta aldez
aurretiko ikuspuntuak edo usteak gaineratzeko aukera ematen dute metodo bayestarrek.

Bayesen teoremak gure aldez aurretiko usteak datuek ematen duten informazioarekin
eguneratzeko aukera ematen digu. Horregatik, datuak aztertu aurretik garrantzitsua da aldez
aurretiko ezagutzak behar bezala adierazten jakitea. Komeni da aukeratutako banaketa
marraztea, balioak arrazoizkoak direla eta gure ezagutzarekin bat datozela egiaztatzeko. Bat ez
badatoz, parametroak alda daitezke kurbak nahi dugun forma eduki arte.

Lan egiteko erabiltzen ditugun datuen bolumena zenbat eta handiagoa izan, orduan eta
txikiagoa izango da aldez aurretiko banaketaren eragina. Horrela, beraz, aldez aurretiko
banaketa desberdin samar batzuetatik abiatuta ere, oso antzekoak diren a priori banaketak
lortu ahal izango ditugu. Ondorio gisa, esan dezakegu inferentzia bayestarrak askoz indar
handiagoa duela lagin-tamaina txikiak ditugunean. lzan ere, kasu horietan izaten da
beharrezkoa informazio gehigarria, gerta baitaiteke eskuragarri dagoen informazioa urria
izatea eta adierazgarria ez izatea.
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7. Kapitulua

7. Merkataritza elektronikoaren inguruko eredu frekuentista bat vs.
eredu bayestar bat, EUSTATek egindako Informazioaren Gizarteari
buruzko Inkesta — Enpresak (IGIE) izenekotik abiatuta

7.1 Testuingurua

Informazioaren Gizarteari buruzko Inkesta — Enpresak (IGIE) 2001ean jarri zuen abian EUSTATek,
teknologia berriek EAEko ekonomia-sarean zenbateraino sartu diren zehazteko eta horren inguruko
jarraipena egiteko, teknologia-alorrak hartzen ari diren iraultza-izaera dela-eta. Harrez geroztik,
urtero egin izan da inkesta.

Laginaren estratuak jarduera ekonomikoaren, enplegu kopuruaren eta Lurralde Historikoaren
arabera zehaztu ziren. Hasiera batean, sei enplegu-estratu zituen inkestak: 0-5, 6-9, 10-19, 20-49,
50-99 eta 100 enplegu edo gehiago, eta jarduera ekonomikoak 65 kodetan banatuta zeuden,
Ekonomia Jardueren Sailkapen Nazionalaren (EJSN) arabera. Geroago, berriz, jarduera ekonomikoak
27 kategoriatan (2009ko EJSNko A38 sailkapenaren arabera) eta enpleguak 3 estratutan (10 enplegu
baino gutxiago, 10-99 enplegu eta 100 enplegu baino gehiago) banatzea erabaki zen.

Beren jarduera EAEn egiten duten edozein tamainatako eta edozein jarduera-sektoretako (lehen
sektorea eta etxeko zerbitzua salbuetsita) establezimenduen multzoa da IGIEko erreferentziazko
populazioa. Inkesta egin duen populazioa EUSTATen EAEko Jarduera Ekonomikoen Direktoriotik
hartu da. Direktorio hori inkesta gehigarri garrantzitsuak egiteko ere erabiltzen da, eta jarduera
ekonomiko, Lurralde Historiko, enplegu kopuru eta eskualde bakoitzaren barruan dauden
establezimenduen kopuruari buruzko informazioa biltzen du. Saltokien kopurua era irregularrean
banatuta dago hiru Lurralde Historikoetako hogei eskualdeetan. Inkesta, nolanahi ere, Lurralde
Historikoaren, enplegu kopuruaren eta jarduera ekonomikoaren inguruko zuzeneko zenbatesleak
emateko diseinatu zen.

Kapitulu honetan proposatutako aplikaziorako, Gipuzkoan merkataritza elektronikoan
diharduten establezimenduen proportzioaren inguruko estimazioetan murgilduko gara.
IGIEaren barruan, Gipuzkoako lagina 2.500 establezimendu inguruko panel bat da, % 15-20ko
urteko berriztapen-tasarekin. Lehenik eta behin, era bayestarrean zenbatetsitako eredu bat
erabiltzea proposatuko dugu merkataritza elektronikoan diharduten establezimenduen
proportzioa Lurralde Historikoaren eta jarduera ekonomikoaren arabera finkatzeko. Ondoren,
emaitza horiek zuzeneko zenbatesle tradizionalen bidez lortutako emaitzekin konparatuko
ditugu.

7.2 Datuak

Gipuzkoaren kasuan eskuragarri ditugun t=2015eko datuak H=169 estratutan eta K=27
jarduera ekonomiko agregatutan egituratuta daude, non
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®  Yur -k adierazten duen merkataritza elektronikoan diharduten h estratuko eta k
jarduera ekonomikoko establezimenduen kopurua.

o ny; -k adierazten duen h estratuan eta k jarduera ekonomikoan dauden lagineko
establezimenduen kopurua.

e Ny, -k adierazten duen h estratuan eta k jarduera ekonomikoan dauden lagineko
establezimenduen kopurua.

® wypy -k adierazten duen h estratuko eta k jarduera ekonomikoko unitate bakoitzaren
pisua.

Halaber, aurreko urteetako informazioa dugu (t-1, t-2, ...), era berean egituratuta.

7.3 Metodologia

Gipuzkoan jarduera ekonomiko bakoitzean (k) merkataritza elektronikoan diharduten
saltokien proportzioaren estimazioak kalkulatzeko, zuzeneko zenbatesle bat erabiltzen da
(zehazki, Horvitz-Thompsonen zenbateslea).

Gipuzkoako proportzio globala zenbatesteko, honako formula hau erabiliko dugu:

ZhYhWh _
D N 7.1).
p= Sowp N Z hPn (7.1)

Eta k jarduera ekonomiko bakoitzari dagokion proportzioaren kasuan, berriz,
- _ ZhYnWh
Z thh

, VkeA38 7.2).
Yhwn (7.2)

k
Non N = Y, N;.

Arazoa orain estratu bakoitzean merkataritza elektronikoan diharduten saltokien
proportzioaren estimazioak kalkulatzen data. Hau da, 169 estratu bakoitzarentzat, bere py
aurkitu behar da. Emaitzak konparatu ahal izateko, probabilitate hauek estatistika
frekuentistarekin eta estatistika bayesiarrarekin kalkulatuko ditugu.

7.3.1 Estatistika frekuentista

Estrato bakoitzarentzat, estrato bakoitzean merkataritza elektronikoan diharduten saltokien
proportzioa estimatzeko, zatiketa egingo da merkataritza elektronikoan diharduten saltoki eta
saltoki guztien kopuruaren artean:

Yh

Pn N

Ondoren, (7.1) eta (7.2) erabilizz merkataritza elektronikoan diharduten saltokien
proportzioaren estimazioak kalkulatuko dira Gipuzkoa eta jarduera ekonomiko bakoitzerako.

Azkenik, %95ko konfiantza tarteak lortzeko hurrengo formulak erabiliko dira:

0, N 2 n D 1—-p
C5% = p + 1.96 Z (_h) (1 B _h) Phk(1 — Pnk)
T N Nh Nhk — 1
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. Np)? np\ Pn(1 — Pn)
1C%5% _ 5 4+ 1.96 Z(_) (1 __)—,vk € A38.

Non N = Zh Nh'
7.3.2 Estatistika bayesiarra

Arestian adierazi dugunez, inferentzia bayestarrak zenbatesleak optimizatzeko aukera
ematen du, gure ezagutza eguneratzeko modu bat eskaintzen baitu (behatutako datuak eta
aurreko inkestetatik hartutako aldez aurretiko informazio bat, informazio osagarri bat edota
adituen iritzia konbinatzea, alegia). Kasu honetan, aurreko urteko IGIEko aldez aurretiko
informazioa duen eredu bat erabiliko dugu.

2. kapituluan azaldutako metodologian oinarrituta, estratu bakoitzeko t. urteko erantzun-
aldagaiak banaketa Binomial bati jarraitzen dio, n eta p parametroekin. Era berean, p
parametro bakoitzak a eta b parametroak dituen beta banaketa bati jarraitzen dio:

yh'~Bin(n,", pp")
prt~Beta(ap, by)

Estratu bakoitzeko Beta banaketaren aj eta by, parametroak kalkulatzeko, honako ekuazio-
sistema hau ebatzi beharko dugu:

t-1 _ ah
(ap +by)

Trunc (cph(t,t_l) * nht‘l) =ap+b,+1

Pn

Non,

e y,t t. urtean merkataritza elektronikoan jardun duten saltokien kopurua den.

e n,' hestratuak t. urtean duen lagin-tamaina den.

o ﬁht t. urtean h estratu bakoitzean merkataritza elektronikoan aritzeko zenbatetsitako
aldez aurretiko probabilitatea den.

e Trunc(.) zati osoa itzultzen digun funtzioa den.

* Phipp) @ koefizientea edo Mathewsen korrelazio-koefizientea den. Koefiziente hori
bi aldagai bitarren arteko elkarketaren neurri bat da. Kasu honetan, t-tik t-lera
bitarteko eta h estratu bakoitzaren barruko y erantzun-aldagaiaren elkarketa neurtzen
du. Horrela, beraz, korrelazioa zenbat eta handiagoa izan, orduan eta garrantzi
handiagoa emango zaio t-1. urteko aldez aurretiko informazioari.

h estratu jakin baterako ¢ koefizientea lortu ezin izan bada, erabili beharreko aldez
aurretikoaren tamaina baliokidea 3 unitate izango da. Gainera, estratu jakin bati buruzko aldez
aurretiko informaziorik izan ezean, 2. Kapitulua kontuan hartuta Beta(1,1) banaketa bat
erabiliko da, p=0.5 baten eta 3 unitateko lagin-tamainaren baliokidea.
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Estratu bakoitzean eta t=2015. urtean merkataritza elektronikoan jarduteko a posteriori
probabilitateak lortzeko, R-ko R2WinBUGS liburutegia erabili dugu, eta liburutegi horrek
WinBUGS software estatistikora jotzen du analisi bayestarra Markov chain Monte Carlo
(MCMC) metodoak erabiliz egiteko. Erabilitako funtzio nagusiak dokumentu honen Il
Eranskinean agertzen dira.

Berriro ere (7.1) eta (7.2) formulak erabiliz, merkataritza elektronikoan diharduten saltokien
proportzioaren estimazioak kalkulatuko dira Gipuzkoa eta jarduera ekonomiko bakoitzerako.

7.4 Analisia

Ondoren, bi paradigmak aplikatzean lortu ditugun emaitzak aurkeztuko ditugu. Lehenik eta
behin, Gipuzkoan eta k jarduera ekonomiko bakoitzean merkataritza elektronikoan diharduten
saltokien proportzioen inguruko estimazioak (bi metodoei jarraikiz lortutakoak) jaso ditugu
ondorengo taulan.

Bigarrenik, bi tekniken bidez lortutako estimazioak eta dagozkien sinesgarritasun-tarteak eta
konfiantza-tarteak jasotzen dituzten grafiko batzuk ditugu. Estimazio bayestarren kasuan,
parametro bakoitzaren a posteriori dentsitate-funtzioa ere jasota dago.
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https://es.wikipedia.org/wiki/Estad%C3%ADstica_bayesiana
http://halweb.uc3m.es/esp/Personal/personas/causin/esp/2012-2013/SMB/Tema8.pdf

Met. bayestarrak Met. frekuentistak
Sektorizazioa Py Sinesg.-tartea D Konf.-tartea (% 95)
(% 95)
Gipuzkoa 0.2660 | (0.2465, 0.2845) 0.2819 | (0.2565, 0.3074)
A38 | Erauzpen-industriak, koke-lantegiak eta | 0.0017 | (0, 0.0160) 0 0
petrolioaren birfinketa (02)
Elikadura-industriak, edariak, tabakoa 0.3281 | (0.1990, 0.4694) 0.35 (0.1772, 0.5228)
(03)
Ehungintza, jantzigintza, larrugintza eta | 0.2401 | (0.1281,0.3654) | 0.2329 | (0.0727,0.3931)
oinetakogintza (04)
Zura, papera eta arte grafikoak (05) 0.3815 | (0.2504, 0.5135) 0.3873 | (0.2178, 0.5568)
Industria kimikoa eta produktu 0.3585 | (0.2277,0.5181) 0.3962 | (0.2178, 0.5568)
farmazeutikoak (07)
Kautxua eta plastikoak (09) 0.2173 | (0.1321, 0.3167) 0.2440 | (0.1191, 0.3688)
Metalurgia eta produktu metalikoak 0.3001 | (0.2131,0.3987) 0.3355 | (0.2070, 0.4640)
(10)
Produktu informatikoak eta 0.4068 | (0.3138, 0.5085) 0.3997 | (0.2921, 0.5073)
elektronikoak. Material eta ekipo
elektrikoa (11)
Makineria eta ekipoa (13) 0.3319 | (0.2410, 0.4360) 0.3652 | (0.2477,0.4828)
Garraio-materiala (14) 0.3460 | (0.2207,0.4831) 0.3628 | (0.2057,0.5199)
Altzariak eta beste manufaktura batzuk | 0.3366 | (0.2223, 0.4637) 0.3792 | (0.2131, 0.5453)
(15)
Energia elektrikoa, gasa eta lurruna 0.1260 | (0.0176, 0.3052) 0.1369 | (-0.0186, 0.2924)
(16)
Ur-hornidura eta saneamendua (17) 0.1173 | (0.0432, 0.2266) 0.1418 | (0.0245, 0.2591)
Eraikuntza (18) 0.1629 | (0.1015,0.2341) | 0.1932 | (0.0931, 0.2933)
Merkataritza eta ibilgailuen 0.3164 | (0.2701, 0.3631) 0.3334 | (0.2762, 0.3905)
konponketa (19)
Garraioa eta biltegiratzea (20) 0.1379 | (0.0809, 0.2127) 0.1327 | (0.0455, 0.2199)
Ostalaritza (21) 0.1499 | (0.1096, 0.2014) 0.1649 | (0.1031, 0.2268)
Telekomunikazioak, informatika eta 0.4770 | (0.3979, 0.5464) 0.4626 | (0.3725, 0.5527)
komunikabideak (22)
Finantza-jarduerak eta aseguruak (25) 0.1811 | (0.1174,0.2538) 0.1815 | (0.0994, 0.2635)
Higiezin-jarduerak (26) 0.2026 | (0.1174,0.3138) 0.2364 | (0.1023, 0.3704)
1+G, aholkularitzak eta beste jarduera 0.3873 | (0.3262, 0.4523) 0.3891 | (0.3134, 0.4648)
profesional eta tekniko batzuk (27)
Zerbitzu osagarriak (29) 0.2225 | (0.1350, 0.3287) 0.2491 | (0.1243, 0.3740)
Bidaia-agentziak eta bidaia-agentzia 0.3745 | (0.2335, 0.5237) 0.3884 | (0.2118, 0.5650)
handizkariak (30)
Administrazio Publikoa eta defentsa 0.1788 | (0.1006, 0.2836) 0.2014 | (0.0779, 0.3249)
(31)
Hezkuntza (32) 0.3582 | (0.2810, 0.4493) 0.3654 | (0.2478, 0.4829)
Osasun-jarduerak (33) 0.3428 | (0.2383, 0.4556) 0.3862 | (0.2455, 0.5270)
Gizarte-jarduerak, jolas-jarduerak, 0.1928 | (0.1515, 0.2396) 0.2027 | (0.1462, 0.2592)
kultura-jarduerak eta beste batzuk (34)
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Aktibitate sektorizazioa A38
7.5 Emaitzak

Eredu bayestarrarekin lortutako zenbatesleak, oro har, metodo tradizionalekin lortutakoak
baino efizienteagoak izaten dira. Teknika bayestarren bidez, tarteen zabalera murritz daiteke
eta denbora-korrelazioari euts dakioke. Gainera, ausazko aldagai bakoitzaren a posteriori
probabilitatearen banaketa lor daiteke, eta hipotesiak kontrastatzeko aukera ematen du
horrek. Hau da, balio horrek balio jakin bat baino txikiagoa edo handiagoa izateko duen
probabilitatea ezar dezakegu estimazio bakoitzean.

Zuzeneko zenbatesleek baliozkoak eta/edo efizienteak ez diren emaitzak eman ditzakete,
laginaren tamaina mugatua denean edo behaketa gehienak aldagaiak hartzen dituen balioen
muturretako batean daudenean. Taulan, bi datu bitxi ikus ditzakegu. Lehenik eta behin,
"Erauzpen-industriak, koke-lantegiak eta petrolioaren birfinketa (02)" jarduera ekonomikoaren
kasuan, zenbatetsitako proportzioa 0 da, konfiantza-tartea bezalaxe. lzan ere, laginean
jarduera honi lotuta sartu diren saltoki urriak ez dira merkataritza elektronikoan aritzen, eta,
beraz, eskuragarri dauden datuek emaitza hori dakarte. Bigarrenik, "Energia elektrikoa, gasa
eta lurruna (16)" jardueraren konfiantza-tartearen beheko muturra negatiboa da. Ez du
zentzurik probabilitate bat 0 baino txikiagoa izateak, eta, beraz, balio hori 0 batekin zuzendu
beharko da eskuz. Eredu bayestarraren bidez, arazo horiek zuzenduta geratzen dira. Izan ere,
ereduak eskuragarri dagoen informazio osagarri eta aldez aurretiko guztia baliatzeko eta
laginaren tamaina baliokidea handitzeko aukera ematen du, eta emaitzak koherenteak izaten
dira beti.
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8. Kapitulua

8. Ondorioak

Azkenik, Estatistika eta Matematika Metodologietan prestatzeko eta ikertzeko Bekari esker
egindako lan honen ondorio nagusiak azalduko ditugu kapitulu honetan.

8.1 Paradigma

Ikuspegi frekuentistaren eta ikuspegi bayestarraren artean dagoen alde nagusia zera da,
lehenak datuak eskuratu aurretik zegoen informazio guztia —teorikoa zein enpirikoa—
baztertzen duela. Estatistika bayestarrean, ordea, ez da hutsetik abiatuta lan egiten. Aitzitik,
aldez aurretiko ezagutza formalki eta esplizituki hartzen da kontuan, eta probabilitate
subjektiboak biltzen ditu, hau da, ikertzailearen intuiziotik sortzen direnak. Probabilitate
subjektibo horiek ez dute zertan arrazoi intuitibo soiletan oinarrituta egon. Aitzitik, zerikusi
handia dute ikertzailearen trebeziarekin eta aldez aurretiko esperientziarekin.

Estatistika bayestarra baliagarria izan daiteke laginaren tamaina nabarmen murrizten denean.
Izan ere, aldez aurretiko datu orokorrez gain gertaera berriak eta ikertzaileek berek
errealitatearen portaeraren inguruan dituzten aurreikuspenak kontuan hartzen direnez gero,
datuak ez dira indargabetzen. Hau da, estatistika bayestarraren abantaila nagusia isolatuta ez
diharduela da. Izan ere, aldez aurretiko ezagutzan oinarrituta dago, eta eskaintzen duen
analisi-esparrua askoz aberatsagoa da, ikertzaileari askatasuna ematen baitio bere
esperimentuetan emaitza jakin batzuk lortzeko probabilitatea baloratzeko.

Ikuspegi bayestarraren ezaugarri bereizgarri bat zera da, laginaren tamaina oso handia denean,
aukeratzen den a priori banaketak oso garrantzi txikia izan ohi duela eta egiantzaren mende
dagoela. Zirkunstantzia horrek agerian uzten du metodo bayestarra batez ere laginaren
tamainak oso handiak ez direnean dela baliagarria.

8.2 Konputazioa

Teknika bayestarrak inplementatzeko, konputazio-ahalegin handia egin behar izaten da.
Zenbait kasutan, beharrezkoak diren integral anizkoitzak ezin dira analitikoki ebatzi.
Horregatik, integralak hainbat dimentsiotan kalkulatzea edo hurbiltzea ahalbidetuko duten
zenbakizko metodo efizienteak behar dira. Zorionez, XX. mendearen bigarren erdialdean
simulazio estokastikoko metodoetan oinarritutako zenbakizko teknika malgu eta efizienteak
garatzen hasi ziren. Horren eta birtualizazioari esker konputu-ekipoen prozesatze- eta
biltegiratze-ahalmen handiagoa ekarri duen teknologiaren garapenaren ondorioz, metodo
bayestarrak gora egiten ari dira.

Gaur egun, oso ahalmen handiko softwarea eta metodologiak daude edonoren eskueran. Lan
honetan, nagusiki R eta WinBUGS (Bayesian Inference Using Gibbs Sampling) erabili ditugu
estimazio bayestarrak egiteko, baina aukera horiek merkatuan eskuragarri dauden aukera
ugarietako bi baino ez dira.
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8.3 Estatistika ofiziala

Teknika berriak —eta teknika bayestarrak bereziki— erabiltzeko interesa gero eta handiagoa da
Estatistika Ofizialaren barruan. Gero eta ohikoagoa da erakundeei eremu txikien edo hasieran
planifikatu ez ziren eta, horregatik, laginean ongi ordezkatuta ez dauden (edota, besterik gabe,
ordezkatuta ez dauden) eremu batzuen inguruko estimazioak egin ditzaten eskatzea.

Normalean, eskualde handietarako edo eremu txikietako agregatuetarako estimazio
fidagarriak emango dituen lagin-tamaina bat aukeratzen da, baina eremu handietarako
erabilitako estatistika-metodoak nekez aplika daitezke eremu txikietan. Izan ere, zuzeneko
zenbatesle klasikoek oso errore estandar handiak izaten dituzte, edota ezin dira kalkulatu,
planifikatu gabeko eremuren bateko laginik ez dagoelako.

7. Kapituluan ikusi dugunez, planteamendu bayestar alternatibo bat estratu bakoitzari buruz
eskuragarri dagoen informaziotik abiatuta aldez aurretiko banaketa bat sortzea eta, era
horretan, laginaren datuek ematen duten ezagutza handiagoa edukitzea da. Aurkeztutako
aplikazioan, inkesta beretik eta eremu txiki berean lortutako aurreko urteko informazioa
erabiltzen zen, denbora-korrelazio berari jarraitzen zitzaion eta estimazio efizienteagoak
lortzen ziren.

Beste planteamendu orokorrago bat eredu misto hierarkizatuena da. Eredu horietan,
eskuragarri dagoen aldez aurretiko informazioa zein informazio osagarria erabiltzen da eredu
aurresalea sortzeko. Hau da, datuen hierarkiak, lotutako eremuek, aurreko urteetako
informazioak edota horiek guztiek ematen duten informazioa erabiltzen da eredu beraren
barruan. Ereduetan oinarritutako zenbatesleak teknika bayestarren edo teknika frekuentisten
bidez lor daitezke.
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l. Eranskina

#Estimacion de una media normal
#Primer estrato
#Simulacion de datos N(27,5), n=250

set.seed(1)
nl<-250
y1l<-rnorm(nl,27,sqrt(5))

#Resumen
mean(yl)# 27.04957
var(yl)# 4.63241

#Verosimilitud
plot(density(yl))

data.ml<-1ist(yl=yl,nl=nl)
par.ml <- c("mul","varl","sd1")

inits<-function(){
list(mul=runif(1,25,35),taul=runif(1,0.00001,0.01))}

#Cargamos libreria
library(R2WinBUGS)

#Previa 1, N(30,0.5)

mu_pl.1<-30

var_pl.1<-0.5

bmbugsl <- bugs(data.ml,inits, par.ml, "M1.txt",
n.chains = 1, n.iter = 10000, n.burnin=1000,
bugs.directory ="...",debug=F)

print(bmbugsl,digits=4)
#27.1545

mul<- bmbugsl$sims.array[,1 ,"mul"]
quantile(mul, c(0.025, 0.975))
sd1<- bmbugsli$sims.array[,1 ,"sd1"]
quantile(sdl, c(0.025, 0.975))

#Grafico
z <- seq(9,1000,length=10000)

nombres<-list("Previa","Veros.",

colores<-c("blue", "green","red")

Posterior")

plot(density(mul), main=
x1im=c(18,45),ylab="")
title(main=expression(paste("Distribuciones de ", mu[1]," <con wuna previa
informativa y n=250")),cex.main=2.1,xlab=expression(mu[1]),cex.lab=3)
lines(z,dnorm(z,mu_pl.1,sqrt(var_pl.1)), main="",col="blue",type="1",1lwd = 5)
lines(density(yl),ylab="",col="green",type="1",1lwd = 5)
legend(31,2.5,nombres,pch=c(15,15,15),col=colores, cex=2)

,cex.axis=2, xlab="",lwd=5,col="red", ylim=c(0,3),
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#Previa 2, N(30,0.02)

mu_pl_2<-30

var_pl 2<-0.02

bmbugsl 2 <- bugs(data.ml,inits, par.ml, "M1_2.txt",n.chains = 1, n.iter = 10000,
n.burnin=1000, bugs.directory ="...",debug=F)

print(bmbugsl 2,digits=4)
#28.8602

mul 2<- bmbugsl 2$sims.array[,1 ,"mul"]
quantile(mul_2, c(0.025, 0.975))
sdl 2<- bmbugsl 2$sims.array[,1 ,"sdl"]
quantile(sdl_2, c(©.025, ©.975))

#Grafico
z <- seq(9,1000,length=10000)

nombres<-list("Previa", "Veros.","Posterior")

colores<-c("blue","green","red")
plot(density(mul_2), main=""
x1im=c(18,45),ylab="")

title(main=expression(paste("Distribuciones de ", mu[l1]," con una previa mas
informativa y n=250")),cex.main=2.1,xlab=expression(mu[1]),cex.lab=3)
lines(z,dnorm(z,mu_pl 2,sqrt(var_pl 2)), main="",col="blue",type="1",1lwd = 5)
lines(density(yl),ylab="",col="green",type="1",1lwd = 5)
legend(31,2.5,nombres,pch=c(15,15,15),col=colores, cex=2)

,cex.axis=2, xlab="",lwd=5,col="red", ylim=c(0,3),

#Disminuimos tamano muestral del primer estrato

#Simulacién de datos, N(27,5) n=25
set.seed(1)

nl_n<-25

y1l _n<-rnorm(nl_n,27,sqrt(5))

#Resumen
mean(yl_n)# 27.3772
var(yl_n)# 4.5135

#Verosimilitud
plot(density(yl_n))

data.ml_n<-list(yl=yl n,nl=nl_n)
par.ml <- c("mul","varl","sd1")

inits<-function(){
list(mul=runif(1,25,35),taul=runif(1,0.00001,0.01))}

#Previa 1, N(30,0.5)
mu_pl.1<-30
var_pl.1<-0.5
bmbugsl n <- bugs(data.ml_n,inits, par.ml, "M1.txt",
n.chains = 1, n.iter = 10000, n.burnin=1000,

bugs.directory ="...",debug=F)
print(bmbugsl_n,digits=4)
#28.1486
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mul_n<- bmbugsl n$sims.array[,1 ,"mul"]
quantile(mul_n, c(0.025, 0.975))
sdl_n<- bmbugsl n$sims.array[,1 ,"sdl"]
quantile(sdl_n, c(©.025, ©.975))

#Grafico

z <- seq(9,1000,length=10000)
nombres<-list("Previa","Veros.","Posterior")
colores<-c("blue","green","red")
plot(density(mul_n),main=""
x1im=c(18,45),ylab="")

title(main=expression(paste("Distribuciéon de ", mu[l1l]," «con una previa
informativa y n=25")),cex.main=2.1,xlab=expression(mu[1]),cex.lab=3)
lines(z,dnorm(z,mu_pl.1,sqrt(var_pl.1)), main="",col="blue",type="1",1lwd = 5)
lines(density(yl),ylab="",col="green",type="1",1lwd = 5)
legend(30,2.5,nombres,pch=c(15,15,15),col=colores, cex=2)

,cex.axis=2, xlab="",lwd=5,col="red", ylim=c(9,3),

#Previa 2, N(30,0.02)

mu_pl 2<-30

var_pl_2<-0.02

bmbugsl_2 n <- bugs(data.ml_n,inits, par.ml, "M1_2.txt",n.chains = 1, n.iter =
10000, n.burnin=1000, bugs.directory ="..",debug=F)

print(bmbugsl 2 n,digits=4)
#29.8761

mul 2 n<- bmbugsl 2 n$sims.array[,1 ,"mul"]
quantile(mul_2 n, c(0.025, 0.975))
sdl_2 n<- bmbugsl_2_n$sims.array[,1 ,"sd1"]
quantile(sdl_2 n, c(0.025, 0.975))

#Grafico

z <- seq(9,1000,length=10000)
nombres<-list("Previa","Veros.","Posterior")
colores<-c("blue","green","red")
plot(density(mul 2 n), main=""
x1im=c(18,45),ylab="")

title(main=expression(paste("Distribuciéon de ", mu[l]," con una previa mas
informativa y n=25")),cex.main=2.1,xlab=expression(mu[1]),cex.lab=3)
lines(z,dnorm(z,mu_pl 2,sqrt(var_pl 2)), main="",col="blue",type="1",1lwd = 5)
lines(density(yl),ylab="",col="green",type="1",1lwd = 5)
legend(31.5,2.5,nombres,pch=c(15,15,15),col=colores, cex=2)

,cex.axis=2, xlab="",lwd=5,col="red", ylim=c(9,3),

#Previa 3, N(90,1000)

mu_pl 3<-0

var_pl_3<-1000

bmbugsl 3 n <- bugs(data.ml_n,inits, par.ml, "M1_plana.txt",n.chains = 1, n.iter
= 10000, n.burnin=1000, bugs.directory ="...",debug=F)

print(bmbugsl 3 n,digits=4)
#27.3572

mul 3 n<- bmbugsl 3 n$sims.array[,1 ,"mul"]
quantile(mul_3 n, c(0.025, 0.975))
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sdl_3 n<- bmbugsl 3 n$sims.array[,1 ,"sd1l"]
quantile(sdl_3 _n, c(@.025, 0.975))

#Graficos

z <- seq(9,1000,length=10000)
nombres<-list("Previa","Veros.","
colores<-c("blue","green","red")

Posterior")

plot(density(mul_3 n),main=
x1im=c(18,45),ylab="")

title(main=expression(paste("Distribucién de ", mu[1l]," con una previa plana y
n=25")),cex.main=2.1,xlab=expression(mu[1]), cex.lab=3)

lines(z,dnorm(z,mu_p1 3,sqrt(var_pl 3)), main="",col="blue",type="1",1wd = 5)
lines(density(yl),ylab="",col="green",type="1",1wd = 5)

legend(30,2.5,nombres, pch=c(15,15,15),col=colores, cex=2)

,cex.axis=2, xlab="",lwd=5,col="red", ylim=c(0,3),

##Segundo estrato

#Simulacién de datos N(300,40), n=150
set.seed(1)

n2<-150

y2<-rnorm(n2,300,sqrt(40))

#Resumen
mean(y2) #300.1376
var(y2)# 32.70165

#Verosimilitud
plot(density(y2))

data.m2<-1list(y2=y2,n2=n2)
par.m2 <- c("mu2","var2","sd2")

inits<-function(){
list(mu2=runif(1,350,450),tau2=runif(1,0.00001,0.01))}

mu_p2.1<-310
var_p2.1<-10

bmbugs2 <- bugs(data.m2,inits, par.m2, "M2.txt",
n.chains = 1, n.iter = 10000, n.burnin=1000,
bugs.directory ="D:/DATOS/NGUTIEAR/Desktop/WinBUGS14/",debug=F)

print(bmbugs2,digits=4)
#300.3694

mu2<- bmbugs2$sims.array[,1 ,"mu2"]
quantile(mu2, c(0.025, 0.975))
sd2<- bmbugs2$sims.array[,1 ,"sd2"]
quantile(sd2, c(0.025, 0.975))

#Grafico

z <- seq(9,1000,length=10000)
nombres<-list("Previa","Veros.","Posterior")
colores<-c("blue", "green","red")
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plot(density(mu2), main="",cex.axis=2, xlab="",1wd=5,col="red",
x1im=c(285,337),ylim=c(0,0.85), ylab="")
title(main=expression(paste("Distribuciones de ", mu[2]," <con wuna previa
informativa y n=150")),cex.main=2.1,xlab=expression(mu[2]),cex.lab=3)
lines(z,dnorm(z,mu_p2.1,sqrt(var_p2.1)), main="",col="blue",type="1",1lwd
lines(density(y2),ylab="",col="green",type="1",1wd = 5)
legend(311,0.87,nombres,pch=c(15,15,15),col=colores,cex=2)

5)

#Previa 2, N(310,0.5)
mu_p2.2<-310
var_p2.2<-0.5

bmbugs2 2 <- bugs(data.m2,inits, par.m2, "M2_2.txt",n.chains = 1, n.iter = 10000,
n.burnin=1000, bugs.directory ="...",debug=F)

print(bmbugs2 2,digits=4)
#303.9940

mu2_2<- bmbugs2_2%$sims.array[,1 ,"mu2"]
quantile(mu2_2, c(0.025, 0.975))
sd2_2<- bmbugs2 2$sims.array[,1 ,"sd2"]
quantile(sd2_2, c(©.025, ©.975))

#Grafico

z <- seq(9,1000,length=10000)
nombres<-list("Previa", "Veros.","Posterior")
colores<-c("blue","green","red")
plot(density(mu2_2), main="",cex.axis=2, xlab="",1lwd=5,col="red",
x1im=c(285,337),ylim=c(0,0.85), ylab="")
title(main=expression(paste("Distribuciéon de ", mu[2]," con una previa mas
informativa y n=150")),cex.main=2.1,xlab=expression(mu[2]),cex.lab=3)
lines(z,dnorm(z,mu_p2.2,sqrt(var_p2.2)), main="",col="blue",type="1",1lwd = 5)
lines(density(y2),ylab="",col="green",type="1",1wd = 5)
legend(311,0.87,nombres,pch=c(15,15,15),col=colores, cex=2)

#Disminuimos tamafio muestral

#Simulacién de datos N(300,40), n=15
set.seed(1)

n2_n<-15
y2_n<-rnorm(n2_n,300,sqrt(40))

#Resumen
mean(y2_n) #300.6378
var(y2_n)# 41.42809

#Verosimilitud
plot(density(y2_n))

data.m2_n<-list(y2=y2_n,n2=n2_n)
par.m2 <- c("mu2","var2","sd2")

inits<-function(){
list(mu2=runif(1,350,450),tau2=runif(1,0.00001,0.01))}
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#Previa 1, N(310, 10)
mu_p2.1<-310
var_p2.1<-10

bmbugs2_n <- bugs(data.m2_n,inits, par.m2, "M2.txt",
n.chains = 1, n.iter = 10000, n.burnin=1000,
bugs.directory ="..",debug=F)

print(bmbugs2 n,digits=4)
#303.0441

mu2_n<- bmbugs2 n$sims.array[,1 ,"mu2"]
quantile(mu2_n, c(©.025, ©.975))
sd2_n<- bmbugs2_n$sims.array[,1 ,"sd2"]
quantile(sd2, c(0.025, 0.975))

#Grafico
z <- seq(9,1000,length=10000)

nombres<-list("Previa","Veros.",

colores<-c("blue","green","red")

Posterior")

plot(density(mu2_n),main="",cex.axis=2, xlab="",1lwd=5,col="red",
x1im=c(285,330),ylim=c(0,0.85), ylab="")
title(main=expression(paste("Distribucién de ", mu[2]," «con una previa
informativa y n=15")),cex.main=2.1,xlab=expression(mu[2]),cex.lab=3)
lines(z,dnorm(z,mu_p2.1,sqrt(var_p2.1)), main="",col="blue",type="1",1lwd = 5)
lines(density(y2_n),ylab="",col="green",type="1",1lwd = 5)
legend(285,0.85,nombres,pch=c(15,15,15),col=colores,cex=2)

#Previa 2, N(310, 0.5)
mu_p2.2<-310
var_p2.2<-0.5

bmbugs2 2 n <- bugs(data.m2_n,inits, par.m2, "M2_2.txt",n.chains = 1, n.iter =
10000, n.burnin=1000, bugs.directory ="...",debug=F)

print(bmbugs2_2_n,digits=4)
#309.4350

mu2_2_n<- bmbugs2_2_n$sims.array[,1 ,"mu2"]
quantile(mu2_2, c(©.025, ©.975))

sd2 2 n<- bmbugs2 2 n$sims.array[,1 ,"sd2"]
quantile("sd2 2 n", c(0.025, 0.975))

#Grafico

z <- seq(9,1000,length=10000)
nombres<-list("Previa","Veros.","
colores<-c("blue","green","red")

Posterior")

plot(density(mu2_2 n), main="",cex.axis=2, xlab="",1lwd=5,col="red",
x1im=c(285,330),ylim=c(0,0.85), ylab="")
title(main=expression(paste("Distribuciéon de ", mu[2]," con una previa mas
informativa y n=15")),cex.main=2.1,xlab=expression(mu[2]),cex.lab=3)
lines(z,dnorm(z,mu_p2.2,sqrt(var_p2.2)), main="",col="blue",type="1",1lwd = 5)
lines(density(y2_n),ylab="",col="green",type="1",1lwd = 5)
legend(284,0.85,nombres,pch=c(15,15,15),col=colores, cex=2)
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#Previa plana, N(0,1000)

mu_p2_3<-0

var_p2_3<-1000

bmbugs2_3 n <- bugs(data.m2_n,inits, par.m2, "M2_plana.txt",n.chains = 1, n.iter
= 10000, n.burnin=1000, bugs.directory ="...",debug=F)

print(bmbugs2 3 n,digits=4)
#300.6254

mu2_3 n<- bmbugs2 3 n$sims.array[,1 ,"mu2"]
quantile(mu2_3 n, c(0.025, 0.975))
sd2_3 n<- bmbugs2 3 n$sims.array[,1 ,"sd2"]
quantile(sd2_3 n, c(0.025, 0.975))

#Grafico
z <- seq(9,1000,length=10000)

nombres<-list("Previa", "Veros.","Posterior")

colores<-c("blue","green","red")
plot(density(mu2_3 n), main="",cex.axis=2, xlab="",1lwd=5,col="red",
ylim=c(0,0.85), xlim=c(285,330),ylab="")
title(main=expression(paste("Distribucién de ", mu[2]," con una previa plana y
n=15")),cex.main=2.1,xlab=expression(mu[2]),cex.lab=3)
lines(z,dnorm(z,mu_p2_3,sqrt(var_p2_3)), main="",col="blue",type="1",1lwd = 5)
lines(density(y2_n),ylab="",col="green",type="1",1lwd = 5)
legend(306,0.85,nombres,pch=c(15,15,15),col=colores, cex=2)

#M1.txt

model{

#Likelihood

for (i in 1:n1){
y1l[i]~dnorm(mul,taul)}
#Prior

mul~dnorm(30,2)
taul~dgamma(0.0001,0.0001)
varl<-1/taul
sdil<-sqrt(varl)}

#M1_2.txt

model{

#Likelihood

for (i in 1:n1){
y1l[i]~dnorm(mul,taul)}
#Prior

mul~dnorm(30,50)
taul~dgamma(0.0001,0.0001)
varl<-1/taul
sdi<-sqrt(varl)}

#M1_plana.txt

model{

#Likelihood

for (i in 1:n1){
y1[i]~dnorm(mul,taul)}
#Prior

mul~dnorm(30,2)
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taul~dgamma(0.0001,0.0001)
varl<-1/taul
sd1l<-sqgrt(varl)}

#M2.txt

model{

#Likelihood

for (i in 1:n2){
y2[i]~dnorm(mu2,tau2)}
#Prior

mu2~dnorm(310,0.1)
tau2~dgamma(0.0001,0.0001)
var2<-1/tau2
sd2<-1/sqrt(tau2)}

#M2_2.txt
model{

#Likelihood

for (i in 1:n2){
y2[i]~dnorm(mu2,tau2)}
#Prior

mu2~dnorm(310,2)
tau2~dgamma(0.0001,0.0001)
var2<-1/tau2
sd2<-1/sqrt(tau2)}

#M2_plana.txt

model{

#Likelihood

for (i in 1:n2){
y2[i]~dnorm(mu2,tau2)}
#Prior

mu2~dflat()
tau2~dgamma(0.0001,0.0001)
var2<-1/tau2
sd2<-1/sqrt(tau2)

##tEstimacion de una proporcion
#Funciones necesarias para obtener a y b

#p media y tamafo muestral
ab_pn<-function(p,n){
a<-p*(n-1)
b<-n-a-1
return(c(a,b))}

#intervalo de confianza al 95%

ab_pp<-function(pl,p2){
p<-(pl+p2)/2
n<-4*p*(1-p)/(p-pl)**2
return(ab_pn(p,n))}

#p media y varianza
ayb_pv<-function(p,v){
a<-p**2*(1-p)/v-p
b<-p*(1-p)**2/v+p-1

return(c(a,b))}
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#Funcion para obtener la distribucidn posterior
beta_posterior<-function(a,b,y,n){

a2<-a+y

b2<-b+n-y

p2<-a2/(a2+b2)

return(c(a2,b2,p2))}

#Primer estrato

#a) p=0.3 n=50
ab_pn(@.3,50)#17.7, 41.3

#b) p=0.3 (0.2,0.4)
ab_pp(0.2,0.4)#24.9 58.1 (tamafio equivalente=83)

#c) Sin conocimiento
#a=1, b=1

#Simulacién de datos datos, p=0,25

set.seed(1)

a<-runif(50,0,1)

x1<-rep(0,50)

for(i in 1:50){
if(a[i]«=0.25){x1[1]<-1}}

x1<-factor(x1)
summary (x1)
#0 40

#1 10

#Despejamos a y b de la verosimilitud, p=0.2, n=50.
ab_pn(0.2,50) #9.8 39.2

#a) Previa 1

#Posterior
posl<-beta_posterior(14.7,34.3,10,50)
posl #24.7000000 74.3000000 ©O.2494949

#grafico 1

plot(z,dbeta(z,14.7, 34.3),ylab="",xlab="",cex.axis=2,col="blue",type="1",1lwd =
5,ylim=c(0,10))

title(main=expression("Conocimiento previo: p=0.3
n=50"),cex.main=2.1,xlab=expression(p[1.1]),cex.lab=3)

lines(z,dbeta(z,9.8, 39.2),ylab="",col="green",type="1",1lwd = 5,ylim=c(0,8))
lines(z,dbeta(z,pos1[1], posli[2]), main="" ,col="red",type="1",1lwd = 5)
legend(0.45,8,nombres, pch=c(15,15,15),col=colores, cex=2)

#b) Previa 2

#Posterior
pos2<-beta_posterior(24.9,58.1,10,50)
pos2 #34.900000 98.100000 0.262406

#grafico 2
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plot(z,dbeta(z,24.9, 58.1),ylab="",xlab="",cex.axis=2,col="blue",type="1",1lwd =
5,ylim=c(0,11))

title(main=expression(paste("Conocimiento previo: ,
ICM{95~'%"'},"=(0.2,0.4)")),cex.main=2.1,x1lab=expression(p[1.2]),cex.lab=3)
lines(z,dbeta(z,9.8, 39.2),ylab="",col="green",type="1",1lwd = 5,ylim=c(0,8))
lines(z,dbeta(z,pos2[1], pos2[2]), main="" ,col="red",type="1",1lwd = 5)
legend(0.45,8,nombres, pch=c(15,15,15),col=colores, cex=2)

#c) Previa 3
#Posterior

pos3<-beta_posterior(1,1,10,50)
pos3 #11.0000000 41.0000000 ©.2115385

#grafico 3

plot(z,dbeta(z,1, 1),ylab="",xlab="",cex.axis=2,col="blue",type="1", lwd =
5,ylim=c(0,11))

title(main=expression(paste("Sin conocimiento

previo")),cex.main=2.1,xlab=expression(p[1.3]),cex.lab=3)
lines(z,dbeta(z,9.8, 39.2),ylab="",col="green",type="1",1lwd = 5,ylim=c(0,8))
lines(z,dbeta(z,pos3[1], pos3[2]), main="" ,col="red",type="1",1lwd = 5)
legend(0.45,8,nombres, pch=c(15,15,15),col=colores, cex=2)

#Segundo estrato

#a) p=0.2 n=35
ab_pn(0.2,35)#6.8 27.2

#b) p=0.2 (0.1,0.3)
ab_pp(0.1,0.3)#12.6 50.4 (tamafio equivalente=63)

#c) Sin conocimiento previo
#a=1, b=1

#Simulamos datos, p=0.1

set.seed(1)

a<-runif(30,0,1)

x2<-rep(0,30)

for(i in 1:30){
if(a[i]«=0.15){x2[i]<-1}}

x2<-factor(x2)
summary (x2)
#0 27

#1 3

#Despejamos a y b, p=0.1 n=30
ab_pn(0.1,30) # 2.9 26.1

#a) Previa 1
#Posterior

pos2.1<-beta_posterior(6.8, 27.2,3,30)
pos2.1 #9.800000 54.200000 ©.153125
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#grafico 1

plot(z,dbeta(z,6.8, 27.2),ylab="",xlab="",cex.axis=2,col="blue",type="1",1lwd
5,ylim=c(0,11))

title(main=expression("Conocimiento previo: p=0.2
n=35"),cex.main=2.1,xlab=expression(p[2.1]),cex.lab=3)

lines(z,dbeta(z,2.9, 26.1),ylab="",col="green",type="1",1lwd = 5,ylim=c(0,8))
lines(z,dbeta(z,pos2.1[1], pos2.1[2]), main="" ,col="red",type="1",1wd = 5)
legend(0.45,8,nombres, pch=c(15,15,15),col=colores, cex=2)

#b) Previa 2

#Posterior
pos2.2<-beta_posterior(12.6, 50.4,3,30)
pos2.2 # 15.6000000 77.4000000 ©0.1677419

#grafico 2

plot(z,dbeta(z,12.6, 50.4),ylab="",xlab="",cex.axis=2,col="blue",type="1",1lwd
5,ylim=c(0,11))

title(main=expression(paste("Conocimiento previo: s
ICA{95~'%"'},"=(0.1,0.3)")),cex.main=2.1,x1lab=expression(p[2.2]),cex.lab=3)
lines(z,dbeta(z,2.9, 26.1),ylab="",col="green",type="1",1lwd = 5,ylim=c(0,8))
lines(z,dbeta(z,pos2.2[1], pos2.2[2]), main="" ,col="red",type="1",1lwd = 5)
legend(0.45,8,nombres, pch=c(15,15,15),col=colores, cex=2)

#c) Previa 3

#Posterior
pos2.3<-beta_posterior(1, 1,3,30)
pos2.3 # 4.000 28.000 0.125

#grafico 3

plot(z,dbeta(z,1, 1),ylab="",xlab="",cex.axis=2,col="blue",type="1", lwd =
5,ylim=c(0,11))

title(main=expression(paste("Sin conocimiento
previo")),cex.main=2.1,xlab=expression(p[2.3]),cex.lab=3)

lines(z,dbeta(z,2.9, 26.1),ylab="",col="green",type="1",1lwd = 5,ylim=c(0,8))
lines(z,dbeta(z,pos2.3[1], pos2.3[2]), main="" ,col="red",type="1",1lwd = 5)
legend(0.45,8,nombres, pch=c(15,15,15),col=colores, cex=2)
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Il. Eranskina

#Anexo II
#Incluimos la previa y el tamano muestral equivalente
datos15%$p previald<-NA

for(i in 1:dim(datos15)[1]){
for(j in 1l:dim(datos14)[1]){
if(datos15$ESTR_DIRECTORIO[i]==datos14$ESTR_DIRECTORIO[j]){
datos15%$p_previald[i]<-datosi4$p f[]]
datos15$n_previal4[i]<-datos14$n_f[j]}
3}

for(i in 1:dim(datos15)[1]){
if(is.na(datos15%$n_previal4[i])){datos15%$n_previal4[i]=3}
if(is.na(datos15$p previal4[i])){datos15$p previal4[i]=0.5}
}

#Calculamos parametros a y b
a<-rep(0,h_15)
b<-rep(0,h_15)

for(i in 1:h){
a[i]<- datos15%$p_previal4[i]*(datosl5$n_previald[i]-1)
b[i]<-datos15%$n_previald[i]-a[i]-1
if (a[i]«=0) a[i]<-0.01
if (b[i]<=0) b[i]<-0.01}

y<-datos15%y
n<-datos15$n
N<-datos15$N

data.previa<-list(y=y,n=n,N=N,h=h_15,a=a,b=b)
par.p <- c("p_total","pi")

inits<-function(){
list(pi=runif(h,0,1))}

#Cargamos libreria
library(R2WinBUGS)

set.seed(1)

bmbugs_previa <- bugs(data.previa,inits, par.p, "previa.txt",
n.chains = 1, n.iter = 10000, n.burnin=1000,
bugs.directory ="D:/DATOS/NGUTIEAR/Desktop/WinBUGS14/")

print(bmbugs_previa,digits=4)

#Simulaciones de cada estrato
pi_post_previa_h<-matrix(e,h,1000)
for(i in 1:h){
pi_post_previa_h[i, ]<-bmbugs_previa$sims.array[,1 ,paste("pi[",i,"]",sep="")]1}
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#Gipuzkoa
p_total_previa_b<- bmbugs_previa$sims.array[,1 ,"p_total"]

p_tot_previa_b<-mean(p_total previa_b)
p_tot_previa_b
# 0.2659584

1 previa_b<-quantile(p_total previa b, c(0.025))
1 previa_b
#0.2464925

u_previa_b<-quantile(p_total_previa_b, c(0.975))
u_previa_b
#0.2845025

#Por sectores A38
datos15$ACTA38<-factor(datos15$ACTA38)
a38<-datos15$ACTA38

dominios<-1list("1","2","3","4","5","6","7","8","9","10","11","12",
"i3","14","15","16","17","18","19","20","21","22","23", " 24",
"25","26","27","28","29","30","31","32","33","34","35","36",
"37","38")

d<-length(dominios)

p_doml_previa<-matrix(0,d,1000)
p_doml_med_previa<-rep(0,d)
for(i in 1:d){
t<-rep(0,1000)
tot<-0
for(j in 1:h){
if (dominios[i]==a38[j]){
t<-t+pi_post_previa_h[j, ]*N[]]
tot<-tot+N[7]
}
p_doml_previa[i,]<-t/tot
p_doml_med_previa[i]<-mean(t/tot) }}

names(p_doml _med_previa)<-
list(lllll, II2II) ll3ll, II4II, ll5ll, "6", ll7ll, II8II, ll9ll, "10", II11II, II12II,
II13II) ll14ll) II15II, II16II) II17II) II18", ll19ll) “2@", II21II, Il22ll, II23IIJ “24“1

||25||) "26", ||27||, "28", n29u, "36", n31u, ||32u, ||33u, u34u, ||35n, “36“,
n37u) "38")

p_dl previa<-matrix(@,length(na.omit(p_doml med_previa)),2)

for(i in 1:length(na.omit(p_doml_med_previa))){
p_dl_previa[i,1]<-as.numeric(names(na.omit(p_doml_med_previa)))[i]
p_dl_previa[i,2]<-na.omit(p_doml_med_previa)[i]}

p_dl previa
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#A38="02"

p_A38 2 previa_b<-p_doml_med_previa[2]
p_A38 2 previa b

#0.00169441

1 A38_2 previa_b<-quantile(p_doml_previa[2,], c(©.025))
u_A38_2 previa_b<-quantile(p_doml_previa[2,], c(©.975))
quantile(p_doml_previa[2,], ¢(0.025,0.975))

#0.00000000 0.01596836

#A38="03"

p_A38 3 previa b<-p_doml_med_previa[3]
p_A38_3 previa_b

#0.3280667

1 A38_3 previa_b<-quantile(p_doml_previa[3,], c(©.025))
u_A38_3 previa_b<-quantile(p_doml_previa[3,], c(©.975))
quantile(p_doml_previa[3,], ¢(0.025,0.975))

#0.1990041 0.4694112

#A38="04"

p_A38 4 previa b<-p _doml_med_previa[4]
p_A38 4 previa_b

#0.240075

1 A38 4 previa_b<-quantile(p_doml_previa[4,], c(©.025))
u_A38 4 previa_b<-quantile(p_doml_previa[4,], c(0.975))
quantile(p_doml_previa[4,], ¢(0.025,0.975))

#0.1281434 0.3654042

#A38="05"

p_A38 5 previa b<-p _doml_med_previa[5]
p_A38 5 previa_b

#0.3814882

1 A38_5 previa_b<-quantile(p_doml_previa[5,], c(©.025))
u_A38 5 previa_b<-quantile(p_doml_previa[5,], c(0.975))
quantile(p_doml_previa[5,], ¢(0.025,0.975))

#0.2504197 0.5134477

#A38="07"

p_A38 7 previa_b<-p_doml_med_previa[7]
p_A38 7 previa_b

#0.3585053

1 A38 7 previa_b<-quantile(p_doml _previa[7,], c(0.025))
u_A38 7 previa_b<-quantile(p_doml _previa[7,], c(0.975))
quantile(p_doml_previa[7,], c(0.025,0.975))

#0.2276541 0.5180853

#A38="09"

p_A38 9 previa_b<-p_doml_med_previa[9]
p_A38 9 previa_b

#0.2173366

1 A38 9 previa b<-quantile(p_doml _previa[9,], c(0.025))
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u_A38 9 previa_b<-quantile(p_doml_previa[9,], c(0.975))
quantile(p_doml_previa[9,], ¢(0.025,0.975))
#0.1321552 0.3167207

#A38="10"

p_A38 10 previa_b<-p_doml_med_previa[10]
p_A38_10 previa_b

#0.3001016

1 A38 10 previa_b<-quantile(p_doml_previa[10,], c(0.025))
u_A38 10 previa_b<-quantile(p_doml_previa[10,], c(0.975))
quantile(p_doml_previa[10,], c(0.025,0.975))

#0.2131268 0.3986713

#A38="11"

p_A38 11 previa_b<-p_doml_med_previa[1l]
p_A38_11 previa_b

#0.4068358

1 A38 11 previa_b<-quantile(p_doml_previa[11,], c(0.025))
u_A38 11 previa_b<-quantile(p_doml_previa[11,], c(0.975))
quantile(p_doml_previa[11,], c(0.025,0.975))

#0.3138329 0.5084525

#A38="13"

p_A38 13 previa_b<-p_doml _med previa[13]
p_A38_13_previa_b

#0.3319086

1 A38 13 previa_b<-quantile(p_doml_previa[13,], c(0.025))
u_A38 13_previa_b<-quantile(p_doml_previa[13,], c(0.975))
quantile(p_doml_previa[13,], c(0.025,0.975))

#0.2410149 0.43596551

#A38="14"
p_A38_14_previa_b<-p_doml_med_previa[14]
p_A38_14 previa_b

#0.3459527

1 A38 14 previa_b<-quantile(p_doml_previa[14,], c(0.025))
u_A38 14 _previa_b<-quantile(p_doml_previa[14,], c(0.975))
quantile(p_doml_previa[14,], c(0.025,0.975))

#0.2207378 0.4830781

#A38="15"
p_A38_15_previa_b<-p_doml_med_previa[15]
p_A38_15 previa_b

#0.3365971

1 A38_15_previa_b<-quantile(p_doml_previa[15,], c(©.025))
u_A38_15_previa_b<-quantile(p_doml_previa[15,], c(©.975))
quantile(p_doml_previa[15,], c(0.025,0.975))

#0.2222601 0.4636895

#A38="16"
p_A38_16_previa_b<-p_doml_med_previa[16]
p_A38 16 previa_b

#0.1259951
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1 A38 16_previa_b<-quantile(p_doml_previa[16,], c(0.025))
u_A38_16_previa_b<-quantile(p_doml_previa[16,], c(0.975))
quantile(p_doml previa[16,], c(0.025,0.975))

#0.0176104 0.3052162

#A38="17"

p_A38 17 previa b<-p_doml_med previa[1l7]
p_A38 17 previa_ b

#0.1172628

1 A38 17 _previa_b<-quantile(p_doml_previa[17,], c(0.025))
u_A38_17_previa_b<-quantile(p_doml_previa[17,], c(0.975))
quantile(p_doml previa[17,], c(0.025,0.975))

#0.04320774 0.22660154

#A38="18"
p_A38_18_previa_b<-p_doml_med_previa[18]
p_A38_18_previa_b

#0.1628718

1 A38_18 previa_b<-quantile(p_doml_previa[18,], c(0.025))
u_A38_18 previa_b<-quantile(p_doml_previa[18,], c(0.975))
quantile(p_doml_previa[18,], c(0.025,0.975))

#0.1014900 0.2340487

#A38="19"
p_A38_19_previa_b<-p_doml_med_previa[19]
p_A38_19 previa_b

#0.3163508

1 A38 19_previa_b<-quantile(p_doml_previa[19,], c(0.025))
u_A38 19_previa_b<-quantile(p_doml_previa[19,], c(0.975))
quantile(p_doml_previa[19,], c(0.025,0.975))

#0.2701332 0.3631196

#A38="20"
p_A38_20_previa_b<-p_doml_med_previa[20]
p_A38 20 previa_b

#0.1378989

1 A38_20 previa_b<-quantile(p_doml_previa[20,], c(0.025))
u_A38 20 previa_b<-quantile(p_doml_previa[20,], c(0.975))
quantile(p_doml_previa[20,], c(0.025,0.975))

#0.08092351 0.21271029

#A38="21"

p_A38 21 previa_b<-p_doml_med_previa[21]
p_A38 21 previa_ b

#0.1499432

1 A38_21 previa_b<-quantile(p_doml_previa[21,], c(0.025))
u_A38 21 previa_b<-quantile(p_doml_previa[21,], c(0.975))
quantile(p_doml_previa[21,], c(0.025,0.975))

#0.1095624 0.2013698

#A38="22"
p_A38 22 previa b<-p_doml_med_previa[22]
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p_A38 22 previa_b
#0.4769936

1 A38_22 previa_b<-quantile(p_doml_previa[22,], c(0.025))
u_A38_22 previa_b<-quantile(p_doml_previa[22,], c(0.975))
quantile(p_doml_previa[22,], ¢(0.025,0.975))

#0.3978893 0.5464147

#A38="25"

p_A38 25 previa_b<-p_doml_med_previa[25]
p_A38_25 previa_b

#0.1810702

1 A38_25 previa_b<-quantile(p_doml_previa[25,], ¢(0.025))
u_A38 25 previa_b<-quantile(p_doml_previa[25,], c(0.975))
quantile(p_doml_previa[25,], ¢(0.025,0.975))

#0.1174039 0.2537635

#A38="26"

p_A38 26 previa_b<-p_doml _med previa[26]
p_A38 26 previa_b

#0.2026248

1 A38 26 previa_b<-quantile(p_doml_previa[26,], c(0.025))
u_A38 26 previa_b<-quantile(p_doml_previa[26,], c(0.975))
quantile(p_doml_previa[26,], ¢(0.025,0.975))

#0.1174303 0.3137936

#A38="27"

p_A38 27 previa_b<-p_doml _med_previa[27]
p_A38_27_previa_b

#0.3873074

1 A38 27 previa_b<-quantile(p_doml_previa[27,], c(0.025))
u_A38 27 previa_b<-quantile(p_doml_previa[27,], c(0.975))
quantile(p_doml_previa[27,], c(0.025,0.975))

#0.3262329 0.4522949

#A38="29"

p_A38 29 previa_b<-p_doml _med_previa[29]
p_A38_29_previa_b

#0.222496

1 A38 29 previa_b<-quantile(p_doml_previa[29,], c(0.025))
u_A38 29 previa_b<-quantile(p_doml_previa[29,], c(0.975))
quantile(p_doml_previa[29,], c(0.025,0.975))

#0.1349709 0.3286571

#A38="30"

p_A38 30_previa_b<-p_doml_med_previa[30]
p_A38_30 previa_b

#0.3744737

1 A38 30 previa_b<-quantile(p_doml_previa[30,], c(0.025))
u_A38 30_previa_b<-quantile(p_doml_previa[30,], c(0.975))
quantile(p_doml_previa[30,], c(0.025,0.975))

#0.2334885 0.5236972
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#A38="31"

p_A38 31 previa_b<-p_doml_med_previa[31]
p_A38 31 previa_b

#0.1787776

1 A38 31 previa_b<-quantile(p_doml_previa[31,], c(0.025))
u_A38 31 previa_b<-quantile(p_doml_previa[31,], c(0.975))
quantile(p_doml previa[31,], c(0.025,0.975))

#0.1006409 0.2836296

#A38="32"

p_A38 32 previa_b<-p_doml_med_previa[32]
p_A38 32 previa_b

#0.3581569

1 A38 32 previa_b<-quantile(p_doml_previa[32,], c(0.025))
u_A38_32 previa_b<-quantile(p_doml_previa[32,], c(0.975))
quantile(p_doml_previa[32,], c(0.025,0.975))

#0.2809560 0.4493003

#A38="33"

p_A38 33 previa_b<-p_doml_med_previa[33]
p_A38 33 previa_b

#0.342817

1 A38 33 previa_b<-quantile(p_doml_previa[33,], c(0.025))
u_A38_33 previa_b<-quantile(p_doml_previa[33,], c(0.975))
quantile(p_doml_previa[33,], c(0.025,0.975))

#0.2383233 0.4555771

#A38="34"

p_A38 34 previa_b<-p_doml_med_previa[34]
p_A38 34 previa_b

#0.1927656

1 A38 34 _previa_b<-quantile(p_doml_previa[34,], c(0.025))
u_A38_34_previa_b<-quantile(p_doml_previa[34,], c(0.975))
quantile(p_doml_previa[34,], c(0.025,0.975))

#0.1515279 0.2396318

#previa.txt
model{

#likelihood
for(i in 1:h){
y[i]~dbin(pi[i],n[i])}

#priors
for(i in 1:h){
pi[i]~dbeta(a[i],b[i])}

#p_total
for(i in 1:h){
mli]<-pi[i]*N[i]}

p_total<-sum(m[1:h])/sum(N[1:h])}

IIl. ERANSKINA
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