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Aurkezpena 

Azken garaiotan big data gizartearen arlo guztietara zabaldu da. Halaber, estatistika ofizialean, 

non erronka bat den bere erabilera datu iturri berri bat bezala. Estatistikako institutuetan 

hainbat proiektu pilotu ari dira egiten big dataren ondorioei heltzeko produkzio estatistikoaren 

alderdi guztietan. 

Eustatek 2016an antolatu zuen Nazioarteko Estatistika Mintegiaren XXIX. edizioa “Big data for 

Official Statistics” izenaren pean, zeina Peter Struijsek eman baitzuen, Big Dataren programako 

koordinatzailea Statistics Netherlands (SN) izenekoan eta Big Dataren taldearen 

koordinatzailea Europar Batasuneko ESSnet (European Statistical System network) izenekoan.  

Argitalpen honek ezagutarazi nahi du arlo honetan eginiko ikerketa lana Eustaten 

formakuntzako eta ikerkuntzako beketariko baten eskutik. Dokumentu honek bi atal ditu. 

Lehenbizikoan errepaso bat egiten zaie ikaskuntza automatikoko metodo batzuei big datan 

erabilgarriak eta bigarrenean aztertzen dira Euskal AEko hotel establezimenduetako prezioen 

eboluzioa, weba eskrapeatuz lortuak, prezioen korrelazio espaziala eta horien bistaratzea bero 

mapen bidez. 

 

 

 

Vitoria-Gasteizen, 2019ko martxoan 

Josu Iradi Arrieta 

EUSTATeko Zuzendari Nagusia 
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Atarikoa 

Euskal Estatistika Erakundeak (Eustat) 2017. urtean estatistika eta matematika metodologietan 

prestatzeko eta ikertzeko emandako bekari esker Machine Learning inguruan egin den lanaren 

emaitza da Koaderno Tekniko honetan bildutakoa. 

Liburu honek bi helburu nagusi ditu: Gaur egungo machine learning munduan erabiltzen diren 

teknika nagusien azalpen bat ematea eta azken bi urteetan zehar Eustaten, Euskal Estatistika 

Erakundean, egindako Big Data proiektuaren emaitzak azaltzea. Hori dela eta koadernoa bi atal 

nagusietan bananduko da non atal bakoitza lau kapituluz osatuta dagoen.  

Lehenengo atalari  dagokionez, alde teorikoz osatuta egongo da metodo desberdinen 

adibideak emanez. Esan bezala lau kapituluz osatuta egongo da. Lehenengo bi kapituluetan 

machine learning munduko bi familia nagusiei buruz, supervised learning eta unsupervised 

learning, hitz egingo da. Ondoren, hirugarren kapituluan azken urteetan fama handia hartzen 

ari diren sare neuronalei buruz hitz egingo da. Azkenik, laugarren kapituluan erabiltzen diren 

algoritmoetarako normalean egiten diren datuen test-balioztatze-entrenamendu banaketei 

buruz hitz egingo da. 

Bigarren atalari dagokionez, aldiz, lan prozesuan jarraitutako pausuak eta hauei dagokien alde 

teorikoa ikusiko da. Bigarren ataleko proiektua Euskal Autonomi Erkidegoko hotelen 

prezioaren urtean zeharreko eboluzioa aztertzen du. Azterketa hau egin ahal izateko, 

erkidegoko hotelen prezioak web plataformoetatik lortu ziren, Eustat erakundeak garatutako 

web scraping prozesu baten bitartez. Datu hauek Eustateko turismo direktorioaren 

Establezimendu Turistiko Hartzaileen Inkestako datuekin fusionatu ziren datu base osoago bat 

lortuz. 

Lortutako datu horiekin EAE-ko ostatuen denboran zeharreko prezioen eboluzioa eta  hauek 

beraien ingurunearekin duten erlazioa modu intuitibo batean erakusten duen aplikazio bat 

garatu da. Aplikazio hau ESRA-k, European Survey Research Association-ek, 2018ko azaroan 

Bartzelonan antolatu zuen BigSurv18 konferentzian aurkeztu zen. 

Halaber, atariko hau baliatu nahi dut Eustateko Metodologia, Berrikuntza eta I+Gko Arloa 

osatzen duten guztiei, Anjeles Iztueta, Jorge Aramendi, Elena Goni, Inmaculada Gil eta Marina 

Ayestarán, igaro diren bi urteetan emandako babes eta konfiantza eskertzeko. Modu berean, 

Eustateko familia osatzen duten langileei eta Asier Badiola bekadunari eskerrak eman nahi 

dizkiet sortutako lan giro onagatik. Bukatzeko,  eskerrak nire familiari, Garaziri eta modu berezi 

batean nire aitite Alejandro Mugarzari, beti nire alboan egoteagatik.  
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Machine learning teknikak 

Liburuaren lehengo atal honetan gaur egungo Machine Learning tekniken errepaso bat egingo 

da. Machine Learning kontzeptu berri bat badirudi ere bere izena 1959-tik dator. Garai artako 

ikertzaileek datuetatik ikasi eta aurreikuspenak egiteko gai diren algoritmoak garatzea 

interesgarria zela pentsatu zuten, gaur egungo Machine Learning  teknikak guztiak garatzeko 

beharrezkoak izan diren lehenengo pausuak emanez. 

Esan bezala Machine Learning prozesuaren helburua datuetatik ikastea da eta, hau eginda, 

etorkizunean aurreikuspenak egitea. Hemen bi familia nagusi bereizi ahalko lirateke: 

Supervised Learning eta Unsupervised Learning. Lehenengoaren helburua, Supervised Learning, 

iraganeko datuetatik abiatuz etorkizuneko datuak aurresatea litzateke. Bigarrenarena, aldiz, 

datuetatik ikastea da, batzuetan ezkutuak dauden edo begi bistaz ikusi ezin diren informazioa 

eta aztertutako elementuen arteko erlazioak ateraz. Bi familia hauei buruz lehenengo bi 

kapituluetan hitz egingo da. 

Hirugarren kapituluari dagokionez, gaur egun indarra handia hartu duten Sare Neuronalei hitz 

egingo da. Machine Learning terminoari gertatzen zaion moduan, Sare Neuronalak gaur 

egungo gauza badirudite ere duela denbora bat definitutako metodoak dira, 1943 urtean 

alegia. Sare Neuronalek hainbat eginkizunetarako balio dutenez, bai Supervised Learningerako 

baita Unsupervised Learningerako ere, kapitulu propio bat merezi zuela erabaki da. 

Bukatzeko, Supervised Learning motako tekniketan (mota honetako problemetarako erabiltzen 

diren Sare Neuronalak barne) aurreikuspenak egin behar diren heinean hauek ere testatua 

behar dira. Hori dela eta, atal honetako azken kapituluan eskuragarri dauden datuak, 

algoritmoak garatzeko eta test desberdinak egiteko, banatzeko existitzen diren teknika 

desberdinei buruz hitz egingo da. 
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1. Supervised learning 

Mota honetako teknikak aztertzen den elementu bakoitzeko irteera balio edo etiketa bat 

aurresan nahi dugunean aplikatzen dira, hau da, hasierako datu batzuetatik abiatuz irteerako 

balio batzuk inferitu nahi direnean. Irteera datuak bai kuantitatiboak, erregresioa, baita 

kualitatiboak, klasifikazioa, izan daitezke. Helburu nagusia ez da inoiz datuetatik ikastea izango, 

baizik eta sarrerako balioak irteerako balioekin ondo erlazionatzen dituen erregela bat lortzea. 

Horrela, etorkizunean datu berriak lortzerakoan, hauei dagokien irteera balioa inferitu ahal 

izango dira. 

Supervised learning metodoen artean ondokoak aztertuko dira: 

1. Erregresio lineala 

2. Erregresio logistikoa 

3. KNN 

4. Perceptron 

5. SVM 

6. Decision trees 

1.1. Erregresio lineala 

Erregresio linealak datu baseko ��, … , �� elementu bakoitzari dagokion ��, . . , �� etiketa  

kuantitatiboa kontuan hartuz, �� elementu berri bat lortzerakoan, honi dagokion ��etiketa 

kuantitatiboa aurresaten saiatzen da.   

Demagun etxe desberdinen metro karratuak eta prezioak dakizkigula eta hauen erlazioaren 

grafikoa egiten dugula, eskumako grafikoaren puntu urdinak lortuz. Ikus daitekeen moduan, 

lortutako puntuek metro 

karratuen eta prezioaren 

arteko erlazioa lineala dela 

suposa daiteke. Orduan, etxe 

baten metro karratuak 

jakinda honen prezioa 

aurresatea interesgarria 

litzateke. Erregresio linealak, 

funtzio lineal baten bitartez, �	  datuen elementu bakoitza 

dagokion � etiketarekin 

egokitzen saiatzen da (lerro 

laranja). 

1.1.1. Algoritmoa 

�′ etiketa berriak aurresateko, teknikaren izenetik ondorioztatu daitekeen moduan,  �(�, 
) 
funtzio lineala lortzea da helburua, non 
 = {
�, … , 
�} funtzio linealaren koefizienteak diren 

eta 
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�	~	�(�, 
) 	= 	
� +�
	�
�

	��
+ � 

den, � ia beti egongo den errorea izanik. 

Erregresio linealaren 
 parametro optimoak errore minimoa ematen dutenak izango dira. 

Errorea neurtzeko garaian, normalena �(�, 
) aurresandako balioaren eta elementuaren � 

etiketaren arteko aldea neurtzen da, horretarako distantzia euklidearra erabiliz. Beraz, 

minimizatu beharreko balio funtzioa ondokoa litzateke: 

����(θ) = �
��∑ (�(�	, 
) − �	)�	�� �

 . 

Funtzio hau minimizatzeko, gradient descent algoritmoa erabili daiteke. Algoritmoa 

aplikatzerakoan, ondoko pausua behin eta berriz egingo litzateke konbergentzia lortu arte 

edota aurretik finkatutako iterazio kopuru maximoa igaro arte: 


 = 
 − "
��∑ #�	$
 − �	%�	�	�� , 1 ≤ ( ≤ ) bakoitzeko. 

1.1.2. Erlazio ez linealeko aldagaiak 

Batzuetan gerta daiteke aldagaien arteko erlazioa 

lineala ez izatea, eskumako grafikoan ikus 

daitekeen moduan. Kasu hauetan ere erregresio 

lineala aplikatzea posible izango litzateke.  

Demagun gure datuek  * aldagai desberdin 

dituztela, orduan aldagai hauen potentziak 

aldagai berri moduan erabili daitezke erregresio 

lineala datuei hobeto egokitzeko. Erregresioa 

linealean  
	 koefizienteak linealak izan behar diren arren eskura dauden datuak egokitu 

daitezke emaitza hobetzen badu. Adibidez, 

aurreko kasuan aldagaien lehenengo lau 

potentzia aldagai moduan gehituz, ezkerrean 

agertzen den emaitza lortuko genuke. Begi-

bistakoa den moduan, hobekuntza nabaria 

lortzen da. Aldagaiei potentzia desberdinak 

aplikatzeaz aparte beste hainbat funtzio aplikatu 

ahal zaizkie, adibidez, logaritmo funtzioa, erro 

karratua, esponentziala eta abar. 

1.1.3. Erregularizazioa 

Ereduari aldagai berriak gehitzerako garaian lortutako ereduak gure entrenamendu edo 

jatorrizko datuak “ikasi” ditzake, etorkizuneko kasu berrietan errore handiagoa emanez. 

Fenomeno horri overfitting deritzo eta saihetsi beharreko gauza bat da. Azpiko argazkian 

puntako bi kasuak ikus daitezke, bai overfitting bai underfitting kasuak. Bigarren hau dugun 

eredua entrenamenduko puntuen izaera ondo islatzen ez duenean gertatzen da. 
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Underfitting Good aproximation Overfitting 

   

Overfitting-a saihesteko egin daitekeen gauza bat aldagaiak kentzea da. Hortaz aparte, 

erregularizazio parametro deituriko + konstantea balio funtzioari gehitu ahal zaio 
 

parametroen penalizazio modura, ondokoa lortuz. 

����(θ) 	= �
��∑ (�(�	 , 
) − �	)��	�� + +∑ 
,�,��  (ohartu 
� penalizaziorik ez duela). 

Parametro honek balio funtzioaren balioa handitu egiten du 
	 parametroen balioa handitu 

ahala. Parametro honen balioa handitu ahala, balio funtzioa minimizatzerako orduan 
		((	 ≠ 	0	(/0)10) elementuen balioa zerorantz joango da eta erregresioak erantzun 

konstante bat emango du, 
�. Parametroaren balioa txikitzerakoan, aldiz,  lortutako eredua 

erregularizaziorik gabeko ereduaren antzekoa izango da. Azkenik, + = 0 kasuan erregularizazio 

gabeko ereduaren berdina izanda 

1.2. Erregresio logistikoa 

Erregresio logistikoa klasifikaziorako 

tekniken artean erabilienetakoa dela 

esan daiteke. Klasifikaziorako teknika 

guztien antzera, erregresio logistikoan 

ditugun {2�, … , 2�} datu bakoitzeko {3�, … , 3�} etiketa izango ditugu. Etiketa 

hauek bitarrak izango dira, hau da, bi 

aukera izango dituzte (bai/ez, bizi/hil…). 

Metodoaren helburua, 2� elementu berri 

bakoitzari dagokion 3′ etiketa aurresatea 

da. Kasu honetan, estimatu nahi den 

etiketa, edota etiketa positiboa, 1 moduan ikusiko dugu eta bestea 0 moduan. 

Erregresio logistikoa, funtzio logistikoa (sigmoid function) deituriko funtzioa erabiliz, elementu 

desberdinen aldagaien eta hauen etiketen arteko erlazioa bilatzen saiatzen da.Erlazio hau 

jakinda, etiketa desberdineko datuak linealki banantzen ditu. Metodo hau, orokortutako 

erregresio linealaren kasu berezi moduan ikus daiteke. 
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1.2.1. Algoritmoa 

Demagun datuak � multzoan ditugula. Orduan algoritmo honen helburua 
 parametroa, * 

tamainakoa, estimatzea da non 4(2�$
) funtzioak 2′ elementuak 1 etiketa izateko duen 

probabilitatea adierazten duen, 

4(/) = �
�5678  sigmoid funtzioa izanda. 

Erregresio logistikorako parametro optimoak lortzeko, ondoko kostu funtzioa minimizatu 

behar da: 

����(θ) = − �
�∑ 3	log	(4#2	$
% + (1 − 3	)log	(1 − 4(2	$
)))�	��  . 

Funtzio hau minimizatzeko, gradient descent erabili daiteke baina baita beste teknika batzuk, 

adibidez: conjugate gradient, BFGS, L-BFGS...  

1.2.2. Linealak ez diren mugak 

Orain arte ikusitakoarekin, muga linealak dituzten 

elementu ezberdinak banandu eta aurresateko 

ahalmena badugu ere, normalean datuak ez dira 

horrelakoak izango. Eguneroko lanean, ohikoena, 

linealki banangarriak ez diren mugak aurkitzea da, 

eskumako adibidean ikus daitekeen moduan.  Kasu 

hauetan, erregresio linealean ikusi dugun moduan, 

aztertzen diren aldagaien potentziak aldagai berri 

moduan datuei esleitzea pena mereziko luke. Hau 

eginda, gure metodoa datuetara egokitu daiteke. 

Ondoko bideoak datuak 5. mailako potentziari igota 

gradient descent algoritmoaren pausuen eboluzioa 

erakusten du. 

1.2.3. Erregularizazioa 

Hainbat supervised learning-eko metodoekin gertatzen den moduan, erregresio logistikoan ere 

eredua egiteko erabili ditugun datuak “ikastea” eta hauekiko desberdina den datu berri bat 

sartzerakoan emaitza txarra ematea gerta daiteke. “Overfiting” fenomeno hau ekiditeko 

erregularizazio parametro bat ereduari gehitzea gomendagarria da. Hau kontuan hartuz, 

ondoko balio funtzioarekin lan egingo genuke: 

����(θ) = − �
�∑ 3	 log <4#2	$
% + (1 − 3	) log <1 − 4#2	$
%==�	�� + >

��∑ 
,�,�� . 

Parametro honen eraginez eredua egiterakoan errorea handitzen bada ere, datu berrien 

etiketak aurresateko erabiltzerakoan lortutako emaitzak hobetzen dira. Ondoko bideoan ikus 

daitekeen moduan, hasieran oso irregularra den muga leuntzen badoa ere +-ren balioa igo 

ahala, puntu batetik aurrera eredua sinplifikatzen doa emaitza txarrak emanez. Beraz, kontu 

handia eduki behar da + parametroaren balioa aukeratzerakoan. 
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1.2.4. Klase anitzen klasifikazioa 

Bi etiketa desberdin dituzten datuekin lan egin badugu ere, baliteke 3 edo etiketa gehiago 

dituzten elementuekin lan egitea nahi izatea. Kasu hauetan klase anitzen klasifikazio baten 

aurrean egongo ginateke.  

Klase anitzen klasifikazio problema ebazteko aukeretatik intuitiboena One vs All deiturikoa 

litzateke. Demagun ? etiketa desberdin daudela, hau da, 3 ∈ {A�, … , AB}. Orduan, erregresio 

logistiko bitarra aplikatzen da A	 etiketa 1 kasua moduan hartuz eta beste guztiak batera 0 

kasua moduan,  ( ∈ {1,… , ?} bakoitzeko, ? eredu desberdin lortuz. Azkenik, datu berriei eredu 

desberdin bakoitzean lortutako probabilitateen artean maximoa duen klasea izango zen 

elementuari egokitutako klasea, hau da, A, non hDE = maxI∈{�,…,J}(ℎLM(2)) den. 

One vs All metodoaz aparte, beste hainbat teknika desberdin existitzen dira. Adibidez, 

multimodal logistic regresion eta ordinal logistic regresion. Lehenak, One vs All teknikaren 

antzeko kontzeptuak lantzen ditu, baina etiketa guztiak bakarka aztertu beharren etiketa bat 

pibote moduan erabiltzen du eta besteak honekiko aztertzen ditu. Bigarrena aldiz 

ordenatutako kategorien azterketarako erabiltzen da. 

1.3. K-nearest-neighbours 

Klasifikazio tekniken artean k nearest neighbors edo KNN deituriko teknika intuitiboenetarikoa 

dela esan daiteke. Teknika hau klasifikaziorako balio duenez, gure datuak ) elementu izango 

dira bakoitza bere etiketarekin. 

Teknika honen ideia antzera etiketatutako elementuak batera egotera joko dutela da. Hori 

kontuan hartuz, elementu berri bat aztertzerakoan elementu horretatik hurbilen dauden 

elementuak  aztertzen dira. Hau egin ostean, gehien agertzen den etiketa elementu berriaren 

etiketa izango da. 

Adibide moduan, demagun eskumako argazkiko 

egoeran gaudela. Hemen, bi modutan 

etiketatutako elementuak ditugu (gurutze berdea 

eta gurutze gorria) eta datu berri bat lortzean 

(borobil horia) honi dagokion etiketa asmatu 

behar dugu. Orduan, ? = 3 “auzokide” 

hurbilenak aztertuz gero, elementu berria 

gurutze gorri moduan etiketatu behar dela 

lortuko genuke. Aldiz, ? = 5 kasuaren azterketa 

egiten bada, gurutze  berde berri batean aurkituko ginateke. 

1.3.1. Algoritmoa 

Etiketa ezezaguneko elementu berri bat aztertzerako orduan, elementu horren eta etiketa 

ezaguneko elementuen arteko distantzia, normalean, ohikoa den distantzia euklidearraren 

bitartez kalkulatzen da. Horretarako, aztertutako elementuak aldagai kuantitatiboak izan behar 

dira. Hala ere,datuak adierazgarriak diren aldagai kualitatiboak izanez gero, beste distantzia 

funtzio bat defini daiteke. Adibide moduan, seinaleak aztertzerakoan elementuen arteko 
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korrelazioa kontuan hartzen da eta karaktere kateak aztertzerakoan, hitz batetik bestera 

heltzeko zenbat elementu gehitu, aldatu edo ezabatu behar diren zenbatzen da. 

Distantziez hitz egiten denez, aldagai guztiak teknikan eragin berdina izateko, egokiena 

aldagaiak normalizatzea izango dela. 

Metodo honen aurrean jartzerako orduan hartu beharreko erabaki bakarra, aztertuko diren 

“auzokide” kopurua da. Parametro honen balioa erabakitzerakoan ondokoa kontuan hartu 

behar da: Gero  eta baxuagoa izan orduan eta emaitza hobeak lortuko ditu baina gero eta 

altuagoa izan orduan eta emaitza leunagoa lortuko ditu. Beraz, gomendagarria da ditugun 

datuak bi multzotan, entrenamendu eta test multzotan, banantzea. Kasu honetan, test 

multzoko elementuak entrenamendu multzoko elementuekin konparatuko dira ?-ren balio 

desberdinetarako eta gero, lortutako etiketa duten etiketarekin bat datorren ikusiko da. Hau 

egin ostean, errore txikiena duen ? balioa hautatuko da.  

 

1.3.2. Adibideak 

KNN oso teknika sinple eta intuitiboa bada ere, klasifikazio problema askotan emaitza onak 

ematen ditu. Adibidez, eskuz idatzitako digituak aurresateko erabiltzen da edota satelitez 

lortutako irudien eszenarioa aurresateko ere. 

1.3.3. Pros vs cons 

Alde batetik teknika honek hainbat aspektu positibo ditu: 

• Oso sinple eta eraginkorra da. 

• Ez du entrenamendurik behar. Adibide berriak oso erraz gehitzen dira. 

• Interpretazio oso sinplea dauka. 

Bestalde, bere puntu negatiboak ere ditu: 

• Konputazionalki garestia da. Datu basearen elementu eta aldagaiak handitu ahala 

orduan eta geldoago joango da. 

• Eskalarekin kontu handia izan behar da. 

1.4. Perceptron 

Perceptron algoritmoa klasifikaziorako tekniken artean sinpleenetakoa da. Hemen, aztertuko 

diren datuak  aldagai kuantitatiboak izango dira, bakoitzak duen etiketa izan ezik kualitatiboa 

izango dena. 
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Algoritmo hau aplikatu ahal izateko, etiketa desberdindun puntuen multzoak linealki 

banangarriak izan behar dira. Beste modu batean esanda, elementuek bi etiketa posible 

badituzte ( demagun 1 eta -1 etiketak), -1 etiketadun eta 1 etiketadun elementuak banatzen 

dituen zuzen edo plano bat existitu behar da. 

1.4.1. Algoritmoa 

Teknika honek 
 parametroa (* × 1 dimentsiodun bektorea) aurkitzen saiatzen da non 

aztertzen den 2	 elementu  bakoitzeko, honen etiketa 3	 = �(Q)(2	
) izango den. 

Horretarako, ondoko balio funtzioa minimizatzen saiatzen da: 

R = −�3	(
	2	),	∈S
 

non T multzoa txarto klasifikatutako, 3	 	≠ �(Q)(
	2	), elementuen indizeez osatutako 

multzoa den. 

Hau lortzeko, stochastic gradient descent deituriko algoritmoa erabiltzen da. Hemen, elementu 

guztiek gradientean duten eraginaren batura honen norabide negatiboan eragin beharrean, 

elementuak banaka aztertzen dira. 

Algoritmoak ondoko pausuak jarraitzen ditu: 

1. 
� = 0 hasieratu. 

2. Txarto klasifikatutako (2	 , 3	) elementuak aurkitu (3	 ≠ �(Q)(
	2	) betetzen dutenak). 

3. Aurreko pausuan elementuren bat aurkitzen bada 
 parametroa ondoko eran 

eguneratu: 	
U5� = 
U + V3	2	. 
a. Bueltatu 2. puntura. 

4. Bigarren puntuan ez bada elementurik aurkitzen, algoritmoa bukatu. 

  

1.4.2. Kontuan hartu beharreko gauzak 

• Data banangarria denean erantzun posible asko daude eta hasieratze balioen 

araberako erantzuna emango da. 

• Pausu kopuru finitu baten emaitza lor badaiteke ere, pausu kopuru altua izan daiteke. 

• Data banangarria ez bada metodoa ez du inoiz konbergituko eta lortutako emaitzak 

patroi zikliko bat jarraituko dute. 

1.5. Support Vector Machine (SVM) 

Klasifikaziorako erabiltzen diren algoritmoen artean SVM-a algoritmo indartsu eta nahiko 

zabaldua da. Algoritmo hau klasifikaziorako erabiltzen den algoritmoa da, hau da, 
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etiketatutako datu multzo batetik abiatuz, datuen eta etiketen arteko erlazioa ikasten saiatzen 

da. Horrela,  etiketarik gabeko datu berriak lortzerakoan, datu horiek zein multzokoak diren 

aurresan ahal izateko.  

Demagun linealki banangarria den etiketatutako datu multzoa dugula. Algoritmo honek 

desberdin etiketatutako datu multzoak (demagun bi etiketa daudela) hiperplano batekin 

banatzen saiatzen da. Horrela, hiperplanoaren alde batean dauden datu guztiak etiketa bat 

izango dute eta beste aldekoak bestea. 

Beste algoritmo batzuek, adib. “Percetron” algoritmoa, desberdin etiketatutako multzoak 

banatzen dituen muga aurkitzearekin nahikoa badute ere SVM algoritmoa “Large margin 

Classifier”  moduan ezagutzen da. Klasifikazio 

metodo honek, multzo desberdinak banatzeaz 

aparte multzoen eta mugen arteko distantzia 

maximizatzen du. 

SVM algoritmoa aplikatzerakoan, sarrera moduan 

aldagai kuantitatiboak izango ditugu eta, sarrera 

datu bakoitzeko, hauek etiketatzen dituen aldagai 

kualitatibo bat izango dugu.  

1.5.1.  Linealak ez diren mugak 

Azaldutako SVM metodoa duen arazo nagusia datuak 

linealki banangarriak izan behar direla da. Beraz, 

aurkitu daitezkeen kasurik gehienetan arazoak izango 

genituzke, eskumako argazkian ikus daitekeen 

moduan. 

Kasu hauek gainditzeko daukagun datuei Kernel 

deituriko funtzioak aplikatzen zaizkie. Horrela, linealki 

banandu ezin diren puntuetatik abiatuz linealki 

banangarriak diren puntuak lortzen dira, ondoko 

bideoan ikus daitekeen moduan.  

Erabiltzen den kerneletatik ezagunena edo erabiliena Kernel Gaussiarra da, RBF Kernel 

moduan ere ezagutzen dena: W#2X, YZ[[X% = A
\(] X̂5_XM]` �a`b )

 

1.5.1.1. Algoritmoa 

Kernel hau aplikatzeko, egin beharreko lehenengo gauza zentro bat, YZ[[X, eta bariantzarentzako 

balio bat, 4, aukeratzea da. Hau eginda, funtzio honek zentrotik hurbil dauden puntuen eta 

urrun dauden puntuen arteko aldea nabarmenduko du, urrun dauden puntuei zero balioa 

egokituz. Aurreko adibidearekin jarraituz, eta  YZ[[X eta 4 egokiak aukeratuz, ondoren azaltzen 

den moduko emaitza lortuko genuke:  
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Demagun algoritmoa entrenatzeko daukagun multzoan n elementu daudela (2�[[[[X, … , 2�[[[[X�. 
Orduan, YZ[[X balioak aukeratzeko posibilitate bat, elementu bakoitza dagoen toki berdinean YZ[[X 
puntu bat jartzea litzateke, hau da, Y�[[[X � 2�[[[[X, … , Y�[[[X � 2�[[[[X. Kasu honetan ) zentro eta, beraz, ) 

kernel edukiko genituzke. 

Orduan, algoritmoa entrenatzeko ondoko balio funtzioa defini daiteke: 

�	�c3	d����#
$��	�% � #1 ! 3	%d����#
$��	�% �	12�
,�
�

,��

�

	��
 

non 

d�����/� � 	! log f 11 � A\gh 	A�0	d����	 �	! log f1 ! 11 � A\gh 

eta 

��	� �	
i
jj
k

���	� � 1���	� � W�2Z[[[X, Y�[[[X�⋮⋮���	� � W�2Z[[[X, Y�[[[X�m
nn
o

 diren eta 
 ikasi nahi diren parametroez osatutako bektorea den. 

1.5.1.2. C eta p balioak 

RBF Kernel-a aplikatzerako orduan, kontu handia eduki 

behar da 4 balioa aukeratzerakoan. Balio txikiegia 

hartuz gero algoritmoa oso zorrotza izango da, kasu 

positibo batzuk kanpoan utziz ( zirkulu urdin argia). 

Bestalde, balio altua hartuz gero kasu positibo moduan 

puntu behar baino gehiago klasifika ditzake (zirkulu 

urdin iluna). 

C balioa, aldiz, erregulazio parametro bat da. Balio oso 

altua erabiliz gero, algoritmoa datu baseko adibideak 
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ikasiko lituzke hauen arteko erlazioak ikasi beharrean eta etorkizuneko adibideetan huts 

eginez. Bestalde, balio baxua erabiliz gero, algoritmoak iragarpenak egiten ondo ez ikastea 

gerta daiteke, ez entrenamenduan ezta etorkizuneko kasuetan ere. 

1.5.1.3. Beste Kernel batzuk 

RBF Kernela erabilienetakoa bada ere, beste Kernel mota batzuk erabili ahal dira, adibidez: 

1. Kernel lineala (kernel gabe): y=1 baldin eta soilik baldin 
$� ≥ 0 bada. 

2. Polinomikoa: W�2, Y) = (02^s	Y + d)	t	non a,c konstanteak diren eta m zenbaki 

arrunta den. 

3. Laplaziarra: W(2, Y) = exp	(−w‖2 − Y‖) non  w > 0 den. 

 

1.5.2. Noiz erabili SVM (ERREGRESIO LOGISTIKOA VS SVM) 

Demagun dugun datu kopurua ) dela eta datu bakoitzak * aldagai kuantitatibo dituela, 

orduan: 

• Aldagai asko baditugu, hau da, * >>> ) bada gomendagarria da erregresio logistikoa 

erabiltzea edota SVM kernelik gabe erabiltzea.  

• * nahiko txikia bada (1-1000) eta datu asko baditugu, hau da, ) (10-10000) (1:10) 

tartean badago SVM- Kernel Gaussiar batekin erabiltzea gomendagarria da. 

• ) oso handia bada (>50000) eta * nahiko txikia (1-1000 tartean) orduan SVM oso 

astiro joango litzateke. Beraz, aldagai gehiago gehitu edo sortzeaz aparte erregresio 

logistikoa erabiltzea edo SVM kernel-ik gabe erabiltzea gomendatzen da. 

1.6. Decision trees 

Zuhaitzetan oinarritutako metodoek aztertzen den datuen espazioa banatzen dituzte eta zati 

bakoitzari etiketa edo balio bat esleitzen dio. Metodo hauek bai erregresiorako baita 

klasifikaziorako erabili ahal diren arren hemen klasifikaziorako kasua aztertuko da.  

Eremu desberdinak definitzerako orduan, mugen interpretazioa errazteko, modu errekurtsibo 

eta bitar batean definituko dira.  

Adibide moduan, demagun aztertzen den datu 

baseko elementuek bi aldagai kuantitatibo, � eta �, 

eta bi balioa hartzen dituen etiketa bat, z, dituztela. 

Demagun ere datuak � eta � aldagaiekiko 

irudikatzen direla eta puntu bakoitzari etiketaren 

arabera kolore bat ematen zaiola, eskuman ikus 

daitekeen grafikoa lortuz. 

Irudian ikus daitekeen moduan, etiketa berdedun puntuak bi eremu isolatuetan daude, etiketa 

gorridunak beste espazio guztia betez. Algoritmoa datu multzoa bitan bananduko du � edo � 

aldagaiarekiko zati bakoitzean mota bakarreko etiketa isolatzen saiatuz. Lortutako 

azpimultzoetan prozesu bera jarraituko du, eremu bakoitzean etiketa bakarra egon arte edo 

lortutako errorea aurretik finkatutako balio bat baino baxuagoa izan arte. Azaldutako 
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adibidean, ezkerreko grafikoan ikus daitekeen 

emaitza lortuko zen, ikus daitekeenez, etiketa 

gorri eta berdedunen arteko mugak oso ondo 

finkatzen dira. 

Etiketa gabeko datu berri bat lortzerakoan, 

nahikoa litzateke bere �eta � aldagaien balioak 

aztertzea zein eremukoa den jakiteko. Horrela, 

duen etiketa aurresango zen. Lehenago lortutako emaitza, zuhaitz deituriko grafo batean 

laburbildu daiteke, era intuitiboago baten lan egin ahal izateko. Ondoren, aztertzen hari garen 

adibidearen zuhaitza ikus daiteke: 

1.6.1. Algoritmoa 

Demagun aztertu beharreko datu multzoa ) aldagai dituela, hau da, ��, … , ��. Algoritmoa 

iterazio bakoitzean bi gauza erabaki beharko ditu: datuak banatzeko erabiliko den { aldagaia 

eta � ebaketa puntua. Hau lortzeko ez dago erregela finkorik, algoritmoak aldagai desberdinen 

puntu desberdinak frogatzen ditu eta errore minimizatzen duen �� ebaketa puntua hautatzen 

du. Errorea kalkulatzeko balio desberdinak erabiltzen dira, ondoren hiru neurri definituko dira: 

Klasifikazio errorea, Gini indizea eta Entropia. Demagun *	  balioa aztertzen ari garen eremuan (-garren etiketadun elementuen proportzioa adierazten duela, orduan: 

1. Klasifikazio errorea: 1 !max�|	|B *	. 
2. Gini indizea: 1 ! ∑ *	�B	�� . 

3. Entropia: !∑ *	ln	�*	�B	�� . 

Hauen artean erabilienak Gini indizea eta Entropia dira. Ikus daitekeen moduan, balio guzti 

hauek 0 izango dira baldin eta soilik baldin aztertzen den eremua etiketa mota bakarra duen 

eremua bada. 

bai 

bai 

bai 

ez bai ez 

ez 

ez 

� y 0.9

� y 0.6

Berdea Gorria

� y 1.5

� y 0.6

Berdea Gorria

Gorria
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Behin zatiketa puntua aurkituta, datu multzoa bi azpimultzotan banatzen da eta azpimultzo 

hauetan prozesu bera jarraitzen da. Hala ere, kontua handia izan behar da egiten den ebaketa 

kopuruarekin. Oso zuhaitz handiek aztertzen den datu base espezifikoa ikasiko (overfiting) 

lukete eta oso zuhaitz txikiak, aldiz, emaitza txarrak emango lituzke. Hau saihesteko, Pruning 

deituriko teknika jarraitzen da. Hemen, lehenik eta behin zuhaitza hazten da, aurretik 

finkatutako tamaina bat lortu arte. Ondoren, honen tamaina murrizten joaten da tamaina 

optimo bat eduki arte. Hasierako zuhaitzaren zein azpi-zuhaitzarekin geratuko garen 

erabakitzeko, zuhaitzaren erroreari zuhaitzaren tamainaren menpeko pisu bat gehituko zaio 

eta balio minimoa duen emaitza hautatuko da. 

1.6.2. Abantailak vs desabantailak 

Metodo honek hainbat abantaila ditu, adibidez: 

• Interpretatzeko erraza da. 

• Aldagai kuantitatibo zein kualitatiboekin la egiteko aukera ematen du. 

• Ez du datuen prozesamendurik behar. 

• Datu base handiekin emaitza onak ematen ditu. 

Bestalde, baditu bere desabantailak ere: 

• Ezegonkorrak izan daitezke, datuen aldaketa txiki bat lortutako emaitzan aldaketa 

handia eragin dezake. 

• Algoritmoa ez da NP-Complete, hau da, problemaren soluzioa bat denbora 

polinomiokoan lortu daiteke baina globalki optimoa den problemaren emaitza lortzea 

ez da hain erraza. 

1.7. Essembled methods 

Teorian ikusitako metodo guztiak aplikatzerako orduan,  modu eta parametro desberdinekin 

saiatu arren, batzuetan lortutako emaitzak nahi bezain egokiak ez izatea gerta daiteke. Hau 

gertatzerakoan, interesgarria litzateke emaitza ez oso onak lortzen dituen tekniketatik abiatuz 

eredu onak lortzea.  

Bereziki hori da ondoren ikusiko diren metodo desberdinen helburua. Teknikak aztertzen hasi 

baino lehen, eredu desberdinen konbinazioak eredu solteak lorturiko emaitzak hobetzeko, 

hauen errorea %50 baino txikiagoa izan behar du. Beste modu batean esanda, ausaz lortutako 

ereduak baino emaitza hobeak eman behar dituzte. 

1.7.1. Boostrap 

Entrenamendu datu multzo berdinari metodo berdina aplikatzerakoan, logikoa den moduan, 

emaitza berdinak lortuko genituzke. Beraz, emaitzak hobetzeko eredu desberdinak garatu eta 

konbinatu nahi baditugu entrenamendu datu multzo desberdinak erabili beharko genituzke. 

Horretarako, “Boostrap” deituriko teknika erabili daiteke. 

Teknika honek hasierako datuetatik {2�, … , 2�}, ) ausazko aukeraketa egiten ditu, 

errepikapenekin. Hau da, � multzo entrenatu nahi izanez gero, ausaz  � aldiz hasierako 

multzotik ) elementu errepikapenekin aukeratzen dira, ��, … ��, lagin desberdinak lortuz. 
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Behin entrenamenduko datu multzotik konbinatuko diren lagin desberdinak lortuz, hauek 

konbinatzeko teknika desberdinak ikusiko ditugu. 

1.7.2. Bagging (Boostrap aggregation) 

Metodo hau ikusiko direnen artean sinpleenetarikoa dela esan daiteke. Kasu honetan 

lortutako entrenamendu multzo bakoitzetik eredu bat lortzen da, ��, eta gero datu berri bat, 2� , lortzerakoan honi loturiko etiketa edo balioa ondoko eran kalkulatuko litzateke: 

• Eredua erregresio eredua bada, emaitza eredu desberdinen emaitzen media izango 

litzateke, hau da, ��2�� � 	 �� 	∑ �	�2���	��  kalkulatuko litzateke. 

• Eredua klasifikaziorako bada, lortutako � ereduak aplikatu ostean kasu gehienetan 

lorturiko etiketa egokituko zaio. 

 

1.7.3. Random forest 

Erabaki zuhaitzak garatzerako orduan Bagging teknikak espero baino emaitza txarragoak 

ematen ditu. Honen arrazoirik nagusiena Bagging teknikarekin lortutako zuhaitz desberdinen 

artean oso korrelazio altua dagoela da. Hori dela eta, lortutako emaitzak bateratu arren 

antzeko emaitzak lortuko genituzke.  

Arazo hauek gainditzeko Ramdom forest teknika garatu zen. Nahiko sinplea den eta Bagging 

teknikarekin antzeko ezaugarriak mantentzen dituen teknika bada ere, emaitza hobeagoak 

lortzen dituela ikus daiteke. Bagging eta Random forest algoritmoen arteko desberdintasuna, 

Boostrap teknika aplikatu ostean lortutako lagineko datuetatik � � * ausazko aldagai 

aukeratzen dituela da, lagin bakoitzeko � aldagaien aukeraketa desberdina izanda. 

Normalean, �~�* erabiltzen da baina edozein balio aukeratu daiteke. 

… 

Training Sample 

Boostrap Sample Boostrap Sample 

Final Model 

… ���2� ���2� 



20 

  

 

1.7.4. Boosting 

Bukatzeko, boosting teknikan ere eredu ahul desberdinak emaitza hobeagoak lortzeko  

konbinatzen diren arren, aurreko teknikekiko desberdintasun nabari bat dauka. Kasu honetan, 

ez dira entrenamendurako multzo desberdinak boostrap-en bidez sortu behar. Hemen, dugun 

entrenamendurako datu multzotik abiatuz eta elementu bakoitzari “pisu” (w	) bat emanez 

entrenatuko den multzo berria aukeratzen da. Eredu guztiak kalkulatu ostean, hauek 

entrenatzeko erabili diren pisuek bakoitzak duen eragina adieraziko dute. Beraz, eredu finala 

ondoko moduan kalkulatuko litzateke: 

��2�� � �(Q)��w	�	�2��
�

	��
� 

1.7.4.1. Adaboost algoritmoa 

Boosting-a erabiltzen duen algoritmo ezagunenetako bat AdaBoost algoritmo da. Demagun ) 

elementu ditugula gure entrenamendu multzoan eta elementu bakoitzeko etiketa bat dugula 

(1 edo -1), hau da, ���, 3�), … , (��, 3�) tuplak ditugula �	  elementu bat izanda eta 3	  honen 

etiketa. Hasiera batean lehengo ereduan parte hartzeko elementu bakoitzaren probabilitatea  

*�,	 = �
� izango da. Orduan Adaboost algoritmoak ondoko pausuak jarraitzen ditu � = 1,… , s 

iterazio bakoitzeko: 

1. Boostrap teknikarekin �	  elementu bakoitzak *U,	 aukeratzeko probabilitatea edukita,  ) tamainako �U multzoa aukeratzen da.  

2. �U klasifikazio eredua ikasten da �U multzoarekin. 

3. Lortutako ereduaren erroreak eta pisuak ondoko eran  kalkulatzen dira : 

a. AU =	∑ *U,	1{3	 ≠ �U(�	)}�	�� . 

b. wU =	 ln(�\6�6� ). 
4. Probabilitate berriak bi pausutan kalkulatzen dira: 

a. Elementu bakoitzaren eragina kalkulatzen da txarto klasifikatuei 

garrantzi handiagoa emanez: 

i. *̂U5�,	 = *U,	 	A\"�	�M	��(�M) 
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b. Elementu guztien eragina kontuan hartuz, bakoitzak hurrengo pausuan 

kontuan hartzeko duen probabilitatea kalkulatzen da. 

i. *U5�,	 � �����,M∑ �����,��  

Bukatzeko elementu berri bakoitzaren etiketa aurresateko lortutako eredu 

desberdinak konbinatzen dira. Hau egiterakoan eredu bakoitzaren eragina aurretik 

kalkulatutako pisuak izango dira: 

�����U�2�6�� � �(Q)	�∑wU 	 �U�2�6���. 

 

 

Ondoko estekan algoritmoaren eboluzioa ikus daiteke 300 iterazioetan zehar. 

 

 

 

 

 

 

Weighted Error Ε… 

Training Sample 

Weighted Sample 

Weighted Sample 

… 

Final Model 

w�, ����� 

… 

Weighted Error Ε� 

w�, ����� 
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2. Unsupervised learning 

Unsupervised learning motatako tekniketan  datuek ez dute inongo etiketa edo baliorik 

esleituta izango. Hemen, ditugun datuei buruz “ezkutatutako”  informazio lortzea izango da 

helburu nagusia. Teknika hauei esker antzeko ezaugarriak dituzten elementuak batu, bi 

pertsonen gustuak jakinda errekomendazioak egin (Netflix edo Amazon egiten duten moduan), 

informazio minimoa galduz datuen dimentsioa laburtu edota elementuen arteko 

menpekotasuna aztertu moduko gauzak egin daitezke. 

Unsupervised learning metodoen artean ondokoak aztertuko dira: 

1. Kluster 

2. PCA 

3. Asociation rules 

4. Content based filtering eta collaborative filtering 

5. Markov Models 

2.1. Kluster 

Kluster teknika aztertzen den datu multzoan dauden egiturak aurkitzen eta datuak multzo 

desberdinetan batzen saiatzen den “unsupervised” metodo barruan dagoen teknika bat da.  

Esan bezala, ditugun datuen elementuak 

multzokatzea (“kluster” desberdinetan 

sartzea) da metodo honen helburua. 

Horretarako, bereziki bi ideia kontuan hartu 

beharko dira. Alde batetik, multzo berdineko 

elementuak oso antzekoak izan behar dira. 

Bestetik, multzo desberdineko elementuak 

beraien artean ahalik eta desberdinenak izan 

behar dira.  

2.1.1. K-means algoritmoa 

Klusterrak kalkulatzerako garaian teknikarik ezagunenetariko bat k-means algoritmoa da. 

Algoritmo hau aplikatzerako garaian, datuak zenbat ? multzotan banandu nahi diren finkatu 

beharko da. Hau eginda, datuen multzoko elementuen artean ? aukeratzen dira, ���, … , �B), 

klusterren zentroideak izango direnak. Ondoren, algoritmoak ondoko pausuak errepikatzen 

ditu: 

1. 2	 elementu bakoitzari hurbilen duen  d	 klusterra egokitzen zaio. Horretarako, argminB‖�B − 2	‖� kalkulatzen da. 2. )B balioa ? klusterrean dauden elementuen kopurua adierazten badu, zentroideak 

berritu egiten dira ondoko eran: �B = �
��∑ 2	��	��  non 2	 elementuak ? klusterrean 

dauden. 

Prozesu berdina behin eta berriz errepikatzen da konbergitu arte edota aurretik finkatutako 

iterazio kopurua igaro arte. Ondoko bideoan algoritmoaren adibide intuitibo bat ikus daiteke. 
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2.1.2. Klusterren aukeraketa 

K-means teknikaren berezitasun bat ditugun datuak zenbat kluster desberdinetan bananduko 

diren hasieratik erabaki behar dela da. Hala ere, gomendagarria da algoritmoa ?-ren balio 

desberdinetarako aplikatzea eta lortutako emaitzak konparatzea. Emaitzak konparatu ahal 

izateko kostu funtzio bat definitu behar da. Adibide bezala, gure � datu baseak ) elementu 

baditu, ondokoa kostu funtzio posible bat litzateke: 

���, ��, … , �B) = 	 ��∑ ∑ ]2,	 ! �,]���	��B,��   

non 2,	 elementua { klusterraren ( elementua den. 

Ohartu gero eta kluster gehiago definitu orduan eta kostu txikiagoa izango duela, ) 

elementurako ) kluster definitzerakoan zero kostua lortuz. Aldagai honen balioa helburuaren 

arabera aukeratzen da. Adibidez, aztertzen den datu basea enpresa baten bezeroak badira eta 

bezeroak ? langileen artean banandu behar badira, langile bakoitzari egokitutako bezeroak 

ahal eta antzekoenak izanda, ? kluster egitea interesgarria litzateke. 

2.1.3. Ohiko arazoa 

k-means algoritmoa aplikatzerakoan, hasieran egiten den ausazko zentroideen aukeraketaren 

arabera algoritmoa emaitza optimo lokal batean gera daiteke. Kasu honetan, emaitza honek 

koste baxua izan arren koste baxuagoko emaitza bat existituko litzateke. Egoera hau 

saihesteko gomendagarria litzateke algoritmoa hasieratze desberdinekin aplikatzea eta kostu 

minimoa duen emaitzarekin geratzea. Ondoko bideoan algoritmoa hasieratze desberdineko 

emandako emaitzak ikus daitezke. 

2.1.4. K-medoids 

K-means funtzioaren kasuan bi elementuen arteko distantzia edo antzekotasuna norma 

euklidearraren bitartez neurtzen da. Beraz, algoritmo hori aplikatzeko nahi eta nahi ez datuak 

kuantitatiboak izan behar dira. Gainera, distantzia euklidearra erabiltzen den heinean, 

distantzia altuko elementuak eragin handia izango dute metodoan.  Arazo hauek gainditzeko, 

k-medoids metodoa definitzen da. Algoritmo honen eta k-means algoritmoaren arteko 

desberdintasun bakarra algoritmoaren lehenengo atalean dago. Hemen, elementuak kluster 

desberdinei egokitzeko garaian hauen eta kluster desberdinen arteko konparaketa beste 

desberdintasun � funtzio bat erabiltzen da. Beraz, algoritmoaren lehenengo pausua ondokoa 

litzateke: 

1. 2	 elementu bakoitzari hurbilen duen  d	 klusterra egokitzen zaio. Horretarako, argminB �(�B , 2	) kalkulatzen da.	
Kmedoids metodoaren kasuan, kmeans metodoan ez bezala, Klusterren zentro moduan datu 

baseko elementuak aukeratzen dira.	
2.1.5. Mixture models 

Kluster bat egiterakoan bi motatako teknika daudela esan daiteke: hard clustering eta soft 

clustering. Lehenengoaren kasuan, elementu bakoitzari kluster bat egokitzen zaio eta 

bigarrenean, aldiz, elementu bakoitzari kluster bakoitzean egoteko probabilitatea egokitzen 
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zaio. Lehen ikusitako k-means algoritmoa lehenengo teknika multzoari dagokio. Ondorengo 

irudian datu base bati k-means (3 kluster) algoritmoa lortutako klusterrak (a), aztertzen den 

datua basea (b) eta soft clustering familiako teknika batek (c) emandako emaitzak ikus 

daitezke. 

 

Bigarren metodo probabilistiko hauetan Mixture models deituriko teknikak erabiltzen dira. 

Hemen Gaussian Mixture Models (GMM) deituriko teknika aztertuko ditugu. Teknika honek, k-

means algoritmoa moduan, aztertzen diren datuak k klusterretan banatzen saiatzen da. 

Horretarako, sarrerako datuen artean parametro desberdineko k banaketa normal daudela 

suposatzen da. Ereduak elementu bakoitza banaketa bati egokituko dio. Banaketa normalen 

bariantza zerorantz joan ahala, lortutako emaitza k-means algoritmoak ematen dituen emaitza 

berdinak lortuko dira.  

 

Eredu hauen abantailarik nagusiena hard clustering teknikak baino emaitza zehatzagoak 

ematen dituztela da. Hala ere, datuen banaketa aurretik finkatzen denez, kluster desberdinak 

itxura finko batekoak izango dira, Gaussian Mixture Models kasuan, elipsoideak. K-means 

algoritmoa aldiz, oso algoritmo azkarra da, datu kopurua handiarekin lan egin ahal duena. 
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2.2. PCA 

Big data-ri buruz hitz egiterakoan datu kantitate erraldoi bati buruz hitz egiten ari gara. Hori 

dela eta, analisi desberdinak egiteko, erabiliko diren teknikak datu kopuru altu batekin 

borrokatu beharko dira. Aldagai askorekin lan egingo dugula kontuan hartuz, interesgarria 

litzateke aldagaien informazio guztia edo ia guztia aldagai kopuru txikiago batekin ordezkatzea. 

PCA teknikaren helburua hori litzateke, aztertzen den datu basearen aldagaiak kontuan hartuz, 

hauen informazioa dimentsio txikiago batera bidaltzea. 

Demagun gure datu baseak ) elementu dituela, bakoitza 1 aldagaiekin. Orduan, gure datuak 1 

dimentsioko espazio batean “bizi” direla esan daiteke. PCA-ren  lana dimentsio horretako zein 

norabideetan datuen bariantzarik altuena dagoen ikustea da, hau da, zein norabideetan 

dagoen elementuen aldaketa handiena. Norabide horiek jakinda, PCA teknikak dimentsio 

baxuagoko espazio batean gure datuen hurbilpenik onena lortzen du. 

2.2.1. d=2 adibidea 

Kontzeptua hobeto ulertzeko, ondorengo 

irudian 1 � 2 den adibide bat ikusiko dugu. 

Adibidean gure datuen puntu grafikoa 

ikusteaz aparte, geroago definituko ditugun 

datuen elementu nagusiak (principal 

component) ikusten dira. Hauek 

informazioaren aldaketa handiena  zein 

norabideetan gertatzen den adierazten 

dute. 

Kasu zehatz honetan gure datuak bi 

dimentsiodun espazio batean daudenez, 

hauek espazio txikiago batean aztertu nahi 

izanez gero bat dimentsioko espazio batera 

eramatea aukera bakarra da. Horretarako, 

datu guztiak gure elementu nagusietako 

handienera proiektatuko ditugu, datu 

guztiak bat dimentsioko zuzenean utziz. 
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2.2.2. d=3 adibidea 

Ondoren, adibide modura, 1 � 3 den adibide bat ikusten da non datuak hiru dimentsioko 

espaziotik abiatuz bi dimentsioko espazio batera proiektatzen diren.

 

2.2.3 Alde teorikoa 

Ditugun datuak dimentsio baxuago batera  proiektatzen ditugunean informazio galera bat 

egongo dela dakigu. Beraz, logikoa den moduan, proiekzioa egiterakoan dagoen informazio 

galera txikiena bermatzen duten norabideak aukeratuko dira. Hasieran komentatu bezala, 

aldagai desberdinen arteko bariantza aztertuko da hauen arteko erlazioa ikusteko. Hau guztia 

kontuan hartuz, froga daiteke kobariantza matrizearen balio singularren deskonposizioan 

(SVD) lortutako norabidea bilatzen ari garen norabideak direla. Beraz, z � 	 ����$ datuen 

kobariantza matrizea bada, z � ����$ honen SVD-a litzateke non � matrize ortonormala * × * dimentsiokoa den eta �� matrize diagonala den, z-ren +� y +� y ⋯ y +� y 0 balio 

propioez osatua dagoen eta 1 ≤ � den. 

Orduan, transformaziorako behar diren bektoreak � matrizearen lehenengo � ≤ * zutabeak 

izango dira. Bektore hauek �� proiekzio matrizea osatuko lukete. Ohartu, � � * kasuan 

dimentsioa ez dela murriztuko, koordenatu aldaketa bat soilik izango bailitzateke. 

Bukatzeko, gure datuak {2�, … , 2�} badira, PCA aplikatu ostean lortutako datuak {2�	}	∈{�,…,�} 
lirateke non 2�	 = ��2	 diren.  

2.2.4 Dimentsioen aukeraketa 

Behin datu multzoaren proiekzio matrizea kalkulatuta erabiliko diren dimentsioak aukeratu 

behar dira. Horretarako, dimentsio bakoitzak ordezkatzen duen hasierako datuen bariantzaren 

ehunekoa zein den aztertzen da eta egokia den kopurua aukeratzen da. Hau egiteko ez dago 

lege edo erregela finkorik eta bakoitzaren beharren araberako aukeraketa egiten da. Demagun 

+�, … , +�lortutako balio propioak direla, orduan lehenengo ? < 1 aldagai nagusiak ordezten 

duen bariantza ondokoa litzateke: 

∑ +	
	�B
	��

∑ +,
,��
,��

∗ 100. 
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2.2.5 Kernel PCA 

Beste teknika batzuekin gertatzen den moduan hemen ere datuen linealtasuna 

aurresuposatzen da baina hori ez da beti zertan gertatu behar. Kasu hauetan, teknika 

aplikatzen hasi baino lehen datuak dimentsio altuago batera eramatea beharrezkoa litzateke, 

datuen linealtasuna bermatzeko. Horretarako, kernel desberdinak erabili daitezke, kernel 

gaussiarra esaterako. 

Ondoren, etiketatutako datu multzo bati PCA kernel gaussiar desberdinak aplikatuz lortutako 

emaitzak ikusten dira.  

 

Ikusten denez, Kernel Gaussiarra d � 10 balioarekin aplikatu ostean, lortutako emaitza datuen 

benetako natura askoz hobeago erakusten du.  

 

2.2.6 Aplikatzerakoan kontuan hartu beharreko puntuak 

• Balio galduekin kontu berezia eduki behar da. Metodo honen helburua informazioa 

laburtzea da eta horretarako korrelazio edo kobariantza matrizea erabiltzen du. Hori 

dela eta, matrize hau ondo definituta egotea beharrezkoa da. 

• Aldagaien arteko bariantza neurtzen denez, nahitaezkoa da hauek eskala berdinean 

egotea. Horretarako aldagaiak estandarizatzea gomendagarria litzateke metodoarekin 

hasi baino lehen. 

• Balio propioak hautatzerakoan, gero eta gehiago hautatu, orduan eta bariantza 

orokorraren portzentajea altuagoa azalduko da. Hala ere, batzuetan ) balio propio 

hautatzetik ) + 1 hautatzera dagoen aldea oso txikia da. Beraz, balio propioen 

kopurua ondo aukeratu behar da, azaldutako bariantza eta aldagai berrien kopuruaren 

arteko balantza mantenduz. 

• Kontuan hartu kalkulatutako �� matrizea entrenamendurako multzoarekin kalkulatzen 

dela. Matrize hori bai entrenamendurako balidaziorako eta baita test-erako erabiliko 

da. 

 

2.3 Association rules 

Asoziazio analisia datu multzo baten barruan batera azaltzen diren gertakizunak aurkitzen 

saiatzen da. Teknika honek, bereziki,  aldagai bitarrak dituen datu base komertzialak aztertzen 
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ditu eta “market basket” analisi moduan ezagutzen ohi da. Testuinguru honetan, aldagai 

bakoitza produktu desberdin bati egokituko litzateke, adibidez, {��, … , ��} elementu badaude, 

( elementu bakoitzeko �, aldagaiak bi balio desberdin hartuko lituzke: 2	, = 1 balioa, ( 
obserbazioan { produktua agertzen dela adieraziko luke eta 2	, = 0 balioa aldiz, { 
produktuaren falta adieraziko luke. Asoziazio legeak aldiz produktu edo elementu baten edo 

multzo baten presentziak beste elementu desberdin baten presentzian duen eragina aztertzen 

du. 

Esan bezala, normalean testuinguru komertzial batean erabiltzen den teknika da. Bereziki, 

denden apalen antolamenduan, produktuen promozioen marketing-a prestatzeko, katalogoen 

diseinuan eta erosketa patroietan oinarritutako erosleen segmentazioan erabili ohi da.  

Adibide moduan, demagun janari denda baten jabeak bere dendatik igaro izan diren 

azkenengo bost erosleen erosketen zerrendak dituela: 

Eroslea Produktuak 

1 {ogia, esnea} 

2 {ogia, haur-oihala, garagardoa, arrautzak} 

3 {esnea,  haur-oihala, kola, garagardoa} 

4 {ogia, esnea,  haur-oihala, garagardoa} 

5 {ogia, esnea, haur-oihala, kola} 

Orduan asoziazio legeek bermatuko liokete erosketen patroiak aurkitzea, adibidez, haur-

oihalak erosten dituzten bezeroek garagardoa ere erosteko aukera altua dela. Asoziazio 

analisiak aldiz, ogia eta esnea normalean batera erosten direla azalduko luke. 

2.3.1 Asoziazio analisia 

Algoritmoa azaldu baino lehen, erabiliko diren pare bat kontzeptu ikusiko dira. Izan bedi   ⊂	 {1,… , 1} azpimultzoa �� = 1,… , �� = 1 elementuen presentzia adierazten duena eta 

izan bitez ¢, � ⊂   non ¢ ∩ � = ∅ eta ¢ ∪ � =   diren. Ondoko kontzeptuak kontuan hartu 

behar dira: 

• ¦( ) = ¦(¢, �);    multzoko elementuen frekuentzia.  Zein elementuen konbinazioa 

askotan agertzen den ikustea interesgarria litzateke, 

• ¦(¢|�) = ¦( )
¦(�); � elementua dagoela jakinda zein den ¢ elementua egoteko 

konfiantza. Normalean ¢ ⟹ �  lege bat dagoela adierazteko erabiltzen da. 

• ℒ(¢, �) = 	 ¦(«,�)
¦(«)¦(�) = ¦(�|«)

¦(�) ; ¢ ⟹ � erregelaren “Lift” deiturikoa. ¢ elementua 

dagoela jakinda � elementua egoteko konfiantzan dagoen segurtasuna zein den 

neurtzen du. 

2.3.2 Apriori algoritmoa 

Algoritmo honen helburua aurredefinitutako � “threshold” bat baino frekuentzia altuagoa 

duten   ⊂	{1,… , 1} azpimultzoak bilatzea da. Helburu hau lortzen laguntzeko ondoko bi 

propietateak erabiltzen dira: 
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• Aztertutako   azpimultzoaren frekuentzia nahikoa ez bada,   barruan duen edozein 

multzoaren frekuentzia ez da nahikoa izango. Matematikoki baliokidea dena, ¬� � � � bada eta  � �   ∪ ¢ bada  ¢ ⊂	 {1,… , 1} izanda, ¬( ′) < � izango da. 

• Aztertutako   azpimultzoaren frekuentzia nahiko altua bada eta ¢ ⊂   bada, orduan ¢ multzoaren frekuentzia nahiko altua izango da. Baliokidea dena, ¬( ) > � 
eta		¢ ⊂   badira, orduan ¬(¢) > � izango da. 

Propietate hauen laguntzaz apriori algoritmoaren bertsio sinple bat ondokoa litzateke: 

1. 0 < � < 1 “threshold” bat finkatu. 

2. Elementu bakarreko, | | � 1 azpimultzoetatik, � bainoa frekuentzia altuagoa 

dituztenak gorde. 

3. Aurreko pausuan gordetako elementuak konbinatuz lortzen diren bi elementuetako | | � 2 azpimultzoetatik, � bainoa frekuentzia altuagoa dituztenak gorde. 

4. Pausua errepikatzen da   multzoaren elementu kopurua, | | = ?,  handituz ? ≤ * 

elementu dituen multzoetatik � bainoa frekuentzia altuagoko bat ere ez egon arte. 

Aurreko propietateak kontuan hartuz begi-bistakoa da ? handitu ahala baztertzen diren 

azpimultzoen kopurua handituko dela. Horri esker, konbinazio guztiak ez dira aztertu beharko. 

Gainera, oso probablea da ? < * bat existitzea non bertatik aurrera dauden azpimultzo guztiak 

baztertzen diren. 

2.3.3 Algoritmoa hobetzen 

Emandako algoritmoa apriori algoritmoaren inplementazio basikoa besterik ez da eta suposa 

daitekeen moduan modu desberdinetan hobe daiteke: 

• | | = ? − 1 elementuko multzo baten frekuentzia � baino altuagoa dela aurrez 

aldetik jakinez gero, multzo horren elementuez edota hauen konbinazioez osatutako 

azpimultzoen frekuentzia � baino altuagoa dela baiezta daiteke. Beraz, azpimultzo 

hauek ez dira zertan aztertu behar. 

• {0, �} ∪ {d} = {d} ∪ {0, �} denez, errepikapenak saihesteko indizeak erabiltzea 

lagungarria da. 

2.3.4 Asoziazio legeak 

Behin batera agertzeko joera dituzten elementuak aurkituta, hauen artean kausalitate 

erlazioren bat dagoen aztertzen da. Horretarako, bigarren �� “threshold” bat finkatzen da eta 

aurreko algoritmotik lortutako   azpimultzoak aztertzen dira. Demagun ¢ ∪ � =   betetzen 

dela orduan ¢ ⟹ � beteko da baldin eta ¦(¢|�� y �� bada. Gogoratu apriori algoritmoan 

¬�¢� eta ¬��� kalkulatzen direla eta ¦�¢|�� � ¦� �¦��� dela, eta, beraz, ez dela berriz ere 

probabilitateen kalkulua egin beharko. Adibidea 

2.3.4 Lift-a 

Aurreko 2.3.1 atalean definitutako kontzeptuetatik Lift elementua  zertarako balio duen 

ikustea falta zaigu. Lehen esan bezala, Lift-a multzo baten ¢ elementua dagoela jakinda multzo 

horretan � elementua egoteko konfiantzan dagoen segurtasuna zein den neurtzen du. 

Elementu honen balioa aztertzerakoan hiru kasu bereizi beharko dira: Lift  < 1 kasua,  Lift = 1 



30 

  

kasua eta Lift > 1 kasua. Aztertzen den kasuaren Lift-a hartzen duen balioa 1 baino baxuagoa 

bada aztertutako elementuetako baten agerpenak bigarrenaren agerpenean eragin negatiboa 

duela esan nahiko du. Bestalde, Lift-a 1 balioa hartzen badu elementuen presentzia 

independentea dela esan nahiko du. Azkenik, 1 baino balio altuagoa hartuz gero elementuak 

batera azaltzeko joera dutela esango du. 

2.4 Content-based-filtering  eta Collaborative filtering 

Teknika hauek  objektu edo produktu batekiko erabiltzaileek duten preferentzia edo balorazioa 

aurresaten saiatzen diren teknikak dira. Mota honetako teknikak, gaur egun oso ezagunak 

diren Amazon, Netflix edo Youtube moduko web-orrialdetan erabiltzen dira erabiltzaileen 

gustuak jakinda produktu, serie edo bideo berriak gomendatzeko. 

Sistema hauek bi adar nagusitan banandu daitezke:  Content-based filtering eta Collaborative 

filtering. 

2.4.1 Content-based filtering 

Metodo mota hauek produktuen deskripzioetan eta erabiltzaileen gustuetan oinarritzen dira. 

Hemen hitz gakoak produktu desberdinak deskribatzeko erabiltzen dira eta erabiltzaileen 

gustuak hitz gako hauen arabera ezartzen dira. Horrela, erabiltzaileak produktu bat ondo 

baloratzen badu (edo erosten badu), algoritmoak produktu horren antzeko ezaugarriak 

dituzten beste batzuk gomendatuko ditu. 

Content-based filtering moduko algoritmoak garatzeko hainbat modu desberdin dauden arren, 

ondoren problema modu analitiko batean ebazteko algoritmo bat azalduko da. Hala ere, mota 

honetako problemak bayesian classifier, cluster analisis, decision trees edota  sare neuronal-en 

bitartez ebatz daitezke, emaitza sinpleagoak lortuz. 

2.4.1.1 Algoritmoa 

Demagun ondoko taulan erabiltzaile desberdinek hainbat pelikulei emandako balorazioak 

ditugula: 

Izena\pelikula Eraztunen 

Jauna 

Harry 

Potter 

Star Wars American 

pie 

Deadpool 

Ane 0 ? 3 ? 4 

Leire 2 0 ? 5 ? 

Aitor ? 5 3 2 5 

Jon 5 4 4 ? 4 

 

Ohartu taulak elementu galduak dituela, arraroa baita pertsona guztiek pelikula guztiak 

ikustea. Hortaz aparte, demagun ondoko taulan pelikulen ezaugarriak laburtzeko erabilitako 

parametroak ditugula: 

Pelikula\Ezaugarria Akzioa Fantasia komedia 

Eraztunen Jauna 0.8 0.9 0.2 

Harry Potter 0.6 0.9 0.3 

Star Wars 0.6 0.8 0.1 
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American pie 0.01 0 0.9 

Deadpool 0.8 0. 0.8 

 

Demagun ­�	erabiltzaile eta ­� pelikula desberdinez osatutako datu basea aztertu behar 

dugula. Orduan bi matrize izango ditugu. Alde batetik, ­� × ­� dimentsioko matrize bat izango 

dugu, ( erabiltzaile bakoitzak { pelikula bakoitzari emandako 3	,  balorazioarekin. Bestetik, ­� × 1 matrizea izango dugu film bakoitzaren 2, ezaugarriekin, 1 y 0 balio arbitrario bat 

izanda. 

Algoritmo honen helburua ( erabiltzaile bakoitzari dagokion 
	 gustuak deskribatuko dituen 

bektorea lortzea da. Behin bektore hauek lortuta erabiltzaileek pelikulei emandako balorazioa �
	�$2, moduan berreskuratu ahalko da. 

Pertsona bakoitza modelatzen duen 
	 bektoreak lortzeko, beste metodoetan egin den 

moduan, errorea kalkulatzen duen balio funtzio bat minimizatu beharko da: 

�����
� � ��∑ ∑ #�
	�$2, ! 3	,%�®`,:°�	,,)��
®�
	��  non ( erabiltzaileak { pelikulari balorazioa eman 

badio  ±((, {) = 1 izango den. Hemen ere, ereduak aztertzen dituen datuak ez ikasteko 

erregularizazioa parametro bat esleituko zaio, ondoko funtzioa lortuz: 

����(
) = �
�∑ ∑ #(
	)$2, − 3	,%� + >

�∑ ∑ 
	B��B��®���,:°(	,,)��®�	�� . 

Balio funtzio honen minimoa aurkitzeko lehen azaldutako gradient descent teknika erabili 

daiteke. 

2.4.2 Collaborative filtering 

Content-based filtering metodoen kasuan ez bezala, mota honetako teknikek erabiltzaileen 

aktibitatea, preferentziak eta testuingurua kontuan hartzen dituzte, hauen arteko 

antzekotasunak bilatuz. Hau eginda, antzekoak diren erabiltzaileak antzeko produktuak 

gustuko dituztela suposatzen da. Metodo mota hauetan, lehenago ikusitakoekin ez bezala, 

produktuen ezaugarriak ez dira aztertzen eta, beraz, pelikulak bezalako objektu konplexuak 

gomendatzeko gai dira hauen ezaugarriak jakin gabe. 

2.4.2.1 Algoritmoa 

Kasu honetan, aurreko tauletatik lehenengoarekin nahikoa izango litzateke, hau da: 

Izena\pelikula Eraztunen 

Jauna 

Harry 

Potter 

Star Wars American 

pie 

Deadpool 

Ane 0 ? 3 ? 4 

Leire 2 0 ? 5 ? 

Aitor ? 5 3 2 5 

Jon 5 4 4 ? 4 

 

Mota honetako tekniketan, pertsona bakoitzaren 
	 gustuez aparte, pelikula desberdinen 2, 
ezaugarriak ere modelatuko dira. Horretarako, ondoko balio funtzioa minimizatu beharko da: 
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�����
, 2) = �
� ∑ ∑ #(
	)$2, − 3	,%�®`

,:°(	,,)��
®�
	��  non ( erabiltzaileak { pelikulari balorazioa 

eman badio  ±((, {) = 1 izango den. Lehenago ikusi den moduan, ereduak aztertzen diren 

datuak ez ikasteko, erregularizazioa parametro bat esleituko zaio, ondoko funtzioa lortuz: 

����(
, 2) = �
�∑ ∑ #(
	)$2, − 3	,%� + >

�∑ ∑ 
	B��B��®���,:°(	,,)��®�	�� + >
�∑ ∑ 2,B�B��®`,�� . 

Aurreko kasuan bezala, hemen ere minimoa gradient descent teknikaren bitartez lor daiteke. 

Pelikulen adibidearekin jarraituz, gomendioak egiteko garaian bi kasu desberdin bereziko 

ditugu. Alde batetik, 
	 elementu desberdinak konparatuz antzeko gustuak dituzten 

erabiltzaileak aurki daitezke. Demagun (� eta (� erabiltzaileak antzeko gustuak dituztela 

(]
	� − 
	`]�~0), orduan logikoa litzateke (�-ek gustuko dituen pelikulak (�-ri ere gustatzea 

eta alderantziz. Bestetik, pelikulen ezaugarriak jakinda eta (� erabiltzaileak  {� pelikula gustuko 

duela jakinda, pelikula horren antzerako pelikulak ere gustuko dituela suposa daiteke. Beraz, 

edozein { pelikula {�-en antzerakoa bada gomenda daiteke, hau da, ]2,−2,�]�~0 betetzen 

duen edozein pelikula (� erabiltzaileari gomenda dakioke. 

Gure sistema duen plataformara erabiltzaile berri bat sartzerakoan, honen gustuen daturik ez 

da egongo eta, beraz, ezin izango dugu beste erabiltzaileekin konparatu. Adibidez, aurreko 

adibideekin jarraituz, erabiltzaile berri bat sartzerakoan demagun ondoko egoeran gaudela: 

Izena\pelikula Eraztunen 

Jauna 

Harry 

Potter 

Star Wars American 

pie 

Deadpool 

Ane 0 ? 3 ? 4 

Leire 2 0 ? 5 ? 

Aitor ? 5 3 2 5 

Jon 5 4 4 ? 4 

Jone ? ? ? ? ? 

Kasu honetan, ezinezkoa da erabiltzaile berriaren gustuak inferitzea, informaziorik ez baitugu. 

Mota honetako oztopoak gainditzeko aukera posibleetatik bi aipatuko ditugu. Lehena eta 

egiten sinpleena, pelikulen balorazioen batez bestekoak erabiltzaile berriaren balorazio 

moduan kontuan hartzea da. Hau eginda, hasiera batean erabiltzaile gehienek gustuko 

dituzten produktuak gomendatuko dira. Bezero berriak produktuak baloratzen doan heinean, 

gomendioak pertsonalagoak izango dira. Bigarrena, erabiltzaile berri bat sartzerakoan, 

produktu sorta baten balorazioa ematea da. Horrela, bere gustuak modelizatzeko beharrezko 

hasierako datuak izango ditugu. 

2.4.3 Teknikak hobetzen: Metodo hibridoak 

Teknika mota biak bakarka emaitza onak eman arren, metodo hauek konbinatuz lortutako 

emaitzak hobetzen direla ikusi da. 

2.4.4 Kontuan hartu beharreko puntuak 

• Aztertuko diren datuek gehienbat datu galduak izango dituzte, oso arraroa da 

erabiltzaile guztiek produktu guztiak aztertu izana. 

• Gomendioak egiterako garaian beharrezkoa da erabiltzaileen artean korrelazioa 

egotea. 
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• Erabiltzaileen balorazioez aparte beste datu batzuk kontuan har daitezke: adina, 

nazionalitatea… 

2.5 Markov Models 

Orain arte ikusitako ereduak eratzeko aztertutako aldagaiak I.I.D (askeak eta berdinki 

banatuak) zirela onartzen zen. Hala ere, bizitza errealean badaude hainbat kasu non I.I.D 

hipotesia ezin izango den bete, adibidez, orduko egongo diren prezipitazioak, grabatutako 

audio baten ezaugarri akustikoak edo eguneko moneta aldaketa ratioak modelatzerakoan, argi 

ikusten da hurrengo balio aurreko balioen araberako izango dela.   

Kasu hauetan, ezingo lirateke aurretik ikusitako teknikak erabili. Mota honetako aldagaiekin 

lan egiteko Markov Models deituriko ereduak erabiliko ditugu. Ondoren, Marko Chains eta 

Hidden Markov Models aztertuko dira. 

2.5.1 Markov chain 

Probabilitate teorian Markov-en prozesua Markov-en propietatea betetzen duen prozesua da. 

Propietate hau “memorylessness” moduan ere ezagutzen da eta gertakizun kate batean 

etorkizuneko gertakizunak iraganeko gertakizunekiko independenteak direla esan nahi du. 

Horrela, etorkizuneko momentu bat modelatzeko, momentuko egoera bakarrik aztertu 

beharko da. 

Modu matematikoago batean esanda, �2�, … , 2�� egoera desberdinen segida badugu, �U 
elementuaren egoera �U\� elementuaren egoeraren menpekoa bakarrik izango da, hau da: 

¬�2U|2�, 2�, … , 2U\�� � ¬�2U|2U\��	∀( ∈ {1,… , )� 
izango da. 

Markov kateen adibide ezagun bat “mozkorraren ibilera” moduan ezagutzen da. Demagun 

zenbaki arrunten (0,1,2,….,n) zuzenetik dabilela eta dagoen zenbakitik hurrengo zenbakira 

joateko probabilitate eta aurrekora joatekoa 0.5-eko dela. Orduan, 5 zenbakitik 4 zenbakira 

joateko probabilitatea 0.5-ekoa izango litzateke, 5 zenbakitik 6 zenbakira joateko 

probabilitatea bezala. Ohartu probabilitate hauek aurreko egoerekiko independentea dela, hau 

da, ez du inporta 5 zenbakira 6 edo 4 zenbakietatik ailegatu den. 

Beste adibide sinple moduan demagun animali omniboro baten dieta aztertzen gaudela. 

Animalia hurrengo egunean haragia edo barazkiak jango dituen jakin nahiko genuke. Demagun 

ere ondoko probabilitateen taula dugula: 

Gaur/Bihar Haragia Barazkiak 

Haragia 0.75 0.25 

Barazkiak 0.6 0.4 

Orduan ondoko Markov-en Katea edukiko genuke: 

 

 

 

 Haragia Barazkiak 

0.75 0.4 

0.25 

0.6 
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Egoera batetik bestera pasatzeko probabilitateek trantsizio matrizea deituriko matrizea 

osatzen dute. Kasu honetan ondoko matrizea edukiko genuke: 

T � <0.75 0.250.6 0.4 =. 
Matrize honen T	, elementu bakoitzak ( egoeratik { egoerara pasatzeko probabilitatea 

adierazten du. Kasu orokorrago batean, demagun 6 egoera desberdin daudela, orduan ondoko 

matrizea izango genuke: 

T =
i
jj
k
*�� *�� *�µ ¬�¶ *�· *�¸*�� *�� *�µ *�¶ *�· *�¸*µ� *µ� *µµ *µ¶ *µ· *µ¸*¶� *¶� *¶µ *¶¶ *¶· *¶¸*·� *·� *·µ *·¶ *·· *·¸*¸� *¸� *¸µ *¸¶ *¸· *¸¸m

nn
o. 

Ohartu matrize honen lerro desberdinen elementuen batura beti 1 izango dela. 

Matrize hau hasiera batetik definituta etor daiteke, aurreko adibidean bezala, edo bakoitzak 

definitu beharko du. Horretarako, egiantza handieneko metodoa erabil daiteke. Demagun, ) 

elementuko segida bat dugula eta ( egoeratik { egoerara pasatzeko probabilitatea (T	, izango 

dena) jakin nahi dugula. Orduan T	, elementurako, ditugun ) elementuetatik ( egoeratik { 
egoerara zenbatetan igarotzen da zati ( egoeran dauden elementu kopurua har dezakegu, hau 

da: 

T	, = ∑ ¹(2B = (, 2B5� = {)B��\�B��∑ ¹(2B = ()B��\�B�� . 
Matrize hau oso garrantzitsua da eredu osoa definitzen baitu. Aztertutako elementua ºU 
egoera batean badago eta hurrengo momentuan zein ºU5� egoeratan egongo den jakin nahi 

badugu nahikoa izango da ºU5� = ºUT kalkulatzea. Kontzeptu hau orokortuz, hasierako º� 

egoera batetik abiatuz � momentu pasa eta gero elementua duen egoera jakin nahi izanez 

gero, nahikoa izango da ºU = º�TU kalkulatzea. 

Aplikazio pare baten adibideak ikusi baino lehen hauek ulertzeko garrantzitsua izango den 

azkeneko kontzeptu bat ikusiko dugu, Stationary Distribution. Stationary Distribution 

deiturikoa hasierako egoera batetik infinitu aldiz mugitu ostean lortzen den egoera da, hau da, º» = limU→»	ºU. Stationary Distribution-a existituko da baldin eta soilik baldin ondoko bi 

baldintzak betetzen dira: 

1. Edozein egoeratik edozein egoeratara heldu daiteke. 

2. Egoera sekuentziek ez dituzte inolako buklerik. 

Ohartu orain arte Markov kateen artean sinpleenetariko bati buruz hitz egin dugula, first order 

Markov chain deituriko. Hemen, egoera berriak inferitzeko aurreko egoera bakarrik kontuan 

hartzen da. Hala ere badaude eredu konplexuagoak, egoera gehiago kontuan hartzen 

dituztenak m-order-Markov-chain. 
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2.5.1.1 Aplikazioen adibidea: Ranking-ak 

Markov-en kateek objektuen rankingak egiteko balio dute. Hemen, aztertuko diren datuak 

objektuen arteko konparaketak izango dira. Adibide moduan, kirol talde edo kirolarien 

rankingak egin daitezke. Kasu hauetan, helburua objektuak “onenetatik” “txarrenetara” 

ordenatzea izango litzateke. 

Rankingak egiteko trantsizio matrize bat eratuko da non egoera bakoitza talde/kirolari bat den. 

Orduan, Stationary distribution-a lortzerakoan bilatzen ari garen emaitza izango dugu. 

Matrizea eraikitzeko momentuan galtzen duten taldeetatik irabazten duten taldeetara joatea 

bermatuko da. Hau da, A taldeak B taldeari irabazten badio, B->A probabilitatea A->B 

probabilitatea baino altuagoa izango da. Lotura hau gogorragoa izan daiteke partidaren 

markagailuaren arabera. Bukatzeko, matrizearen lerroak normalizatzen dira hauen batura 1 

izateko. Hau eginda, Markov-en katearen stationary distribution-a bilatu egiten da eta 

lortutako bektorearen balioak taldeen arteko rankinga emango digu. Probabilitate handien 

dituzten egoerak talderik onenak izango dira eta probabilitate baxuenekoak, aldiz, txarrenak. 

2.5.1.2 Aplikazioen adibidea: Klasifikazioa 

Demagun datu asko baina datuen kopuru txiki baten 

etiketak bakarrik ditugula eta datuak duten egituraz 

baliatuz etiketarik gabeko elementuen etiketak jakin 

nahi ditugula. Datuak egituratuta badaude, Markov-

en kateen bitartez elementuen etiketa inferitu 

daiteke. Adibidez, eskumako irudian datu kopuru 

handia dugu (puntu beltzak) etiketaturiko bi 

punturekin (elementu urdina eta gorria). Kasu 

honetan, badirudi datuek egitura finko bat dutela 

(puntu urdinak zentroan eta gorria eraztunean), 

beraz, Markov-en kateez balia gaitezke. 

Hemen ere trantsizio matrizea eratu egin behar da, hurbilen dauden puntuen artean 

mugitzeko probabilitatea handiagoa emanez. Kasu honetan, etiketaturiko elementu batera 

ailegatzean bertan geratuko da, hau da, 2	 etiketatutako elementu bat bada T		 � 1 izango da. 

Puntu hauek absortzio egoerak deituko dira. 

Azkenik, etiketa gabeko puntuen etiketa jakiteko puntu horietatik abiatuz eta trantsizio 

matrizea aplikatuz lortzen den lehenengo absortzio egoerak aztertuko da. Bukatzeko, egoera 

horrek duen puntuaren etiketa hasierako puntuaren etiketa izango da. 

2.5.2 Hidden Markov Models 

Orain arte ikusitako adibideetan behaketak neurgarriak ziren. Hala ere, hori ez da zertan beti 

gertatu behar. Batzuetan baliteke aztertuko diren egoerak neurgarriak ez izatea edo hauek 

neurtzeko aukera ez izatea. Kasu horietan lagungarria lirateke Hidden Markov Models 

erabiltzea. Hemen, neurgarriak diren obserbazio sekuentzia batetik abiatuz {2�, … , 2�} 
aztertuko diren egoerak lortzen dira. 
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Adibide teoriko moduan, demagun Ane eta Jon elkarrengandik urrun bizi diren bi lagun direla. 

Demagun ere telefonoz egunero hitz egiten dutela. Jonek eguraldiaren arabera hiru ekintza 

nagusi egiten ditu arratsaldeetan, kirola, erosketak edo ordenagailuan ibili. Demagun Jonek 

egun bakoitzean egindako ekintza Aneri kontatzen diola. Datu horiekin, Anek egun bakoitzean 

egindako eguraldia jakin nahiko luke, bi gertaeren artean erlazioa argia ikusten baitu. Hau 

Hidden Markov Model aplikatzeko egoera aproposa litzateke. Anek bere lagunak egindako 

ekintzak dakizkien arren ez dauka egun bakoitzeko eguraldiaren informazioa. Demagun, Anek, 

Jonen herriaren eguraldiaren joera ondoko probabilitate banaketa jarraitzen duela dakiela: 

Gaur/Bihar Eguzki Euri 

Eguzki 0.6 0.4 

Euri 0.3 0.7 

 

Eguzki 0.4 

Euri 0.6 

Gainera, Jonek ondoko ohiturak dituela ere badakiela: 

Gaur/Bihar Kirola Erosketak Ordenagailua 

Eguzkia 0.6 0.3 0.1 

Euri 0.1 0.2 0.7 

Datu guzti hauekin Anek Jonek egun bakoitzean egindako aktibitate jakinda egun horretako 

eguraldiaren probabilitatea jakiteko informazioa izango du. 

Ondoko bi artikuluetan pare bat adibide praktiko ikusi ahalko dira. Lehenengoan, eredu hauek 

medikuntza arlora aplikatuta lortutako emaitzak ikus daitezke. Bigarrenean, seinu hizkuntzaren 

keinuak duten esanahia inferitzen saiatzen dira. 

Metodo honen kasuan hiru osagai nagusi izango genituzke: 

1. TU trantsizio matrizea, egoera batetik bestera aldatzeko probabilitateak dituena. 

2. T6 emisio matrizea, elementu bakoitza egoera bakoitzetik sortua izateko 

probabilitatea adierazten duena. 

3. ½ hasierako egoeren probabilitateen banaketa. 

Aurreko adibidean ondoko matrizeak izango genituzke: 

TU � <0.6 0.40.3 0.7= ;T6 � <0.6 0.3 0.10.1 0.2 0.7= ; ½ = (0.4 0.6). 
Datu hauek aurretik emanda egon daitezke, adibidean ikusi den moduan  adibidez. Hala ere, 

beste kasu batzuetan inferitu behar izango dira. Aztertutako kasu hau, bereziki, Hidden Markov 

Model diskretua izango litzateke, egoerak diskretuak baitira. Bukatzeko, teknika honek hiru 

egoera nagusien aurrean erabili ohi da: 

1. Obserbazio sekuentzia bat {2�, … , 2�} eta {½,TU ,T6} elementuetatik abiatuz {��, … , ��} egoera bakoitza gertatzeko probabilitatea jakin nahi denean. Horretarako, 

forward-backward algoritmoa erabiltzen da. 
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2. Obserbazio sekuentzia bat {2�, … , 2�} eta {½, TU , T6} elementuetatik abiatuz, 

probableen den egoera sekuentzia {��, … , ��} lortu nahi denenan. Horretarako Viterbi 

algoritmoa erabiltzen da. 

3. Obserbazio sekuentzia {2�, … , 2�} batetik abiatuz ereduaren {½, TU, T6} elementuak 

lortu nahi denean. Horretarako, egiantza handieneko metodoa erabiltzen da. 

Bukatzeko, hemen azaldutako eredua diskretua bada ere, badago metodo hau egoera espazio 

jarraitu batean aplikatzea, adibidez, egoera denbora izanda.  
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3.Sare neuronalak 
Sare neuronalak animalien neuronen sarearen funtzionamendua imitatzen saiatzen diren 

teknikak dira. Sare hauek, naturan gertatzen den moduan, neurona deituriko 

interkonektatutako nodo desberdinez osatuta daude. Teknika hauek gehienbat “supervised 

learning” motatako eginkizunetarako erabiltzen badira ere, badaude “unsupervised learning” 

motatako lanak egiteko gai direnak. Hortaz aparte, robotikaren munduan ere erabili ohi dira, 

kotxe autonomoen garapenean adibidez. 

Sare neuronalen egitura, normalean, hiru zati nagusietan banatzen da: 

1. Sarrerako geruza: “Input layer” deiturikoa, hemengo nodoetan hasierako datuak 

sartuko dira (balio kategorikoak ,jarraituak, argazkiak, testua, etab.). 

2. Ezkutuko geruza: “Hidden layers” deiturikoa, hemen sarrerako datuetatik habiatuz 

beharrezko konbinazioak egin eta funtzio desberdinak aplikatzen dira. 

3. Irteera geruza: ”Output layer” deiturikoa, irteerako balioak dituzten neuronez osatuta 

dago (kategoriak, balio jarraituak, argazkiak, etab.). Helburuaren arabera aurreko 

ezkutatutako kapen konbinazio lineala edo honi aplikatutako funtzio bat izango du. 

Oinarrizko sare neuronaletan, geruza batetik besterako bidean, aurreko geruzaren neuronen 

konbinazio lineal desberdinak egiten dira, pisu deituriko balio eskalarrak erabiliz. Ondoren, 

nodo bakoitzean step-function edo activation function deituriko funtzio bat konbinazioan 

lortutako balioari aplikatzen zaio, neurona bakoitza aktibatzen den edo ez edo neurona 

bakoitzaren eragina jakiteko. Ondoren oinarrizko sare neuronal baten egitura ikus daiteke: 

 

Aurreko irudiko sare neuronalak ondorengo prozesua jarraituko luke: 

1. Hasierako kapan gure datuen lehenengo elementuaren aldagaiak sartuko lirateke �� � �2��, 2��, 2�µ). 

2. Lehenengo ezkutuko geruzaren { ∈ {1,… ,4} nodo bakoitzeko, º,�, º,� eta º,µ pisuak 

egongo lirateke. 

3. Nodo bakoitzean 3�, = �,(º,�2�� +º,�2�� +º,µ2�µ) aurreko geruzaren balioen 

konbinazio lineal bati �,aktibazio funtzioa aplikatuko litzaioke. 
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4. Bigarren ezkutuko geruzan aurreko geruzaren prozesu berdina jarraituko zen, ? 

neurona bakoitzeko ºB�, ºB� eta ºBµ pisu eta �Baktibazio funtzio berriekin, 3�B 

balioak lortuz. 

5. Azkenik, aurreko kasuen moduan, irteera geruzara azkeneko ezkutuko geruzaren 

balioen konbinazio lineal bati azkeneko aktibazio funtzioa aplikatuz lortutako balioa 

esleituko litzaioke, º�, º�, ºµ pisu eta � aktibazio funtzioak erabiliz eta 3 irteera 

balioa lortuz. 

Sare neuronal sinpleenetarikoen artean 1. atalean ikusitako Perceptron algoritmoa,Erregresio 

Lineal Sinplea edota Erregresio Logistiko Sinplea egongo lirateke. Hauek, ondorengo irudiko 

egitura izango lukete, aktibazio funtzio desberdina aplikatuz.  

 

Perceptron-en kasurako seinu funtzioa erabiliko genuke. Erregresio Lineal Sinple-rako, aldiz, 

identitate funtzioarekin nahikoa izango genuke edota geroago ikusiko den ReLU funtzioarekin 

(gure etiketatutako datuek balio negatiboak ez dituztenean). Azkenik, Erregresio Logistiko 

Sinple-rako, sigmoide funtzioa erabiltzearekin nahikoa genuke. 

3.1 Aktibazio funtzioak 

Ikusi den moduan, aktibazio funtzioaren aukeraketak bukaerako ereduan eragin handia dauka. 

Hain zuzen ere, klasifikaziorako balio duen eredu batetik erregresiorako balio duen eredu 

batera pasatzea ahalbidetzen gaitu. Ondoren, funtzio nagusi batzuk aipatuko dira: 

Funtzioaren izena Funtzioa Grafikoa 

 

Identity 

 ��2� � 2 

 
 

Binary step 

 

��2� � ¾0	)�)	2 � 0
1	)�)	2 ≥ 0 

 
 

Softsign 

 

�(2) = 2
1 � |2| 

 
Sigmoid (Logistic)  

�(2) = 1
1 � A\^ 
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ReLU(Rectified linear unit) 

 

��2� � ¾0	)�)	2 � 0
2	)�)	2 ≥ 0 

 

 

Adibide guzti hauek nodo bateri bakarrik eragiten diete, baina badira geruza berdineko nodo 

guztietara sartzen den informazioa kontuan hartzen duten funtzioak; adibidez:  

Funtzioaren izena Funtzioa 

 

Softmax 

 

�	(2X) = A^M

∑ A^��
B��

 

 

Azken funtzio hau besteak beste klase anizkoitzen klasifikaziorako erabiltzen da. 

Aktibazio funtzioekin bukatzeko, ohartu hemen azaldutako funtzioak existitzen diren funtzioen 

portzentaje txiki bat direla. Hortaz aparte, posiblea litzateke funtzio propioak erabiltzea, bai 

asmatutakoak, baita ikusitako baten bariazioak ere.  

3.2 Sarrerako eta irteerako datuak 

Esan dugun moduan sare neuronalek zenbakiekin lan egiteaz gain, aldagai kategorikoekin, 

argazkiekin edota testuarekin lan egiteko gai dira. Hala ere, kalkuluak egin ahal izateko 

zenbakiak behar direnez, aldagai mota guzti hauek transformatu beharko dira.  

Aldagaiak kategorikoak badira, bi kategoria daudenean hauei 1 eta 0 balioak eman dakieke. 

Bestalde, ) badaude, ) aldagai berri sortzearekin nahikoa litzateke 1 edo 0 balioekin. Aldagai 

bakoitza kategoria bat definituz. 

Aldagaiak argazkiak direnean bi kasu bereiz genituzke. Alde batetik, kolorea garrantzitsua ez 

denean argazkia gris eskalara pasa daiteke. Horrela, argazkia pixelez osatutako ) ∗ �-ko 

matrize bat izango litzateke. Orduan, matrizea )� elementuko bektore bihurtuko zen, 

elementu bakoitza aldagai bat izanda. Bestetik, kolorea garrantzitsua denean aurreko gauza 

bera egin daiteke baina, kasu honetan, ) ∗ � ∗ 3 dimentsioko matrize bat izango genuke eta 

lortutako hiru bektoreak bata bestearen atzean jarriko genituzke. 

Azkenik, testuarekin lan egiterakoan hainbat aukera egongo lirateke. Alde batetik, agertzen 

den hitz bakoitzeko aldagai bat sor daiteke. Hemen, aztertzen diren esaldietan, hitz bakoitza 

zenbat aldiz agertzen den aztertuko litzateke. Bestetik, agertzen diren hitzen sustraiak atera 

(batetik  -> bat esaterako) daitezke. Hau egiterakoan, sustrai bakoitzeko aldagai bat egitearekin 

nahikoa litzateke, 1 edo 0 balioa emanez. 

3.3 Sareak entrenatzen 

Sare neuronal bat eratzerako orduan, lehenik eta behin, honen egitura aukeratu behar da. Hau 

da, zenbat geruza eta zenbat nodo erabiliko diren aukeratu behar da. Honetarako ez dago 

erantzun finkorik. Helburuaren arabera baliteke aurretik finkatutako konfigurazio batzuk 

aztertuta jada egotea baina gehienetan froga desberdinak egin beharko dira egitura egokia 

aurkitu arte. Estruktura bat hautatu eta gero erabiliko diren pisuak definitu behar dira. 

Horretarako, erabiliena den metodoa 1. ataleko metodo batzuetan erabilitako Gradient 
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Descent teknikaren oso antzekoa da, Backpropagation deiturikoa. Teknika honetan hasieran 

pisuak ausaz aukeratzen dira eta datuei sarea aplikatzen zaie. Ondoren, lortutako emaitza 

(hasiera baten seguruenik txarra izango dena) emaitza errealarekin konparatu egiten da eta, 

errorearen arabera, pisuak egokitzen dira. Metodoa modu sakonago eta bisualago batean 

ondoko estekan ikus daiteke. 

3.4 Beste sare neuronal mota batzuk 

Orain arte aztertutako sareak  oinarrizkoenak lirateke, Multilayer FeedForward fully conected 

Neural Networks moduan ezagutzen direnak. Hala ere, badira beste sare mota asko. Ondoren 

beste 4 sare familien adibideak ikusiko dira. 

3.4.1 Convolutional Neural Networks: CNN 

Argazkiekin lan egiterakoan, klasifikaziorako normalean, interesgarria da argazkien ezaugarriak 

detektatzeko gai den eredu bat izatea, hau da, aurpegiak detektatzen duen eredu bat nahi 

izatekotan, ereduak belarriak, begiak, ezpainak etab. dauden edo ez jakitea baliagarria 

litzateke. Hori da hain zuzen ere mota honetako sareen eginkizuna.  

 

Sare mota hauek aurretik aipatutako geruza motez aparte beste bi mota berri erabiltzen ditu: 

Convolutional layers eta  Pooling layers. Lehenengoak argazkiei filtro desberdinak pasatzen die 

hauen ezaugarriak isolatzeko asmoz eta bigarrenak aztertzen diren ezaugarrien dimentsioa 

txikitzen du gero eta zehatzagoa izan dadin. Normalean, mota honetako sareetan aipatutako bi 

geruza horiek erabiltzen dira ezaugarrien eragina ateratzeko eta gero, klasifikazioa egiteko 

helburuarekin, hasieran azaldutako sareak erabiltzen dira. 

3.4.2 Recurrent Neural Networks 

Batzuetan ereduak “memoria” izatea interesatzen da, hau da, ereduak lehenago lortutako 

emaitzak hurrengo datuetarako kontuan izatea. Kasu horietan mota honetako sareak 

erabiltzen dira. Normalean, testua edo soinua sortzeko edo aztertzeko erabiltzen diren 

sareetan erabili ohi dira, hemen testuinguruak garrantzi handia baitu.  
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3.4.3 Generative Adversarial Nertworks 

Bere izenak dioen moduan, mota honetako sareek  lehiaketaren bitartez sortzen diren sareak 

dira. Normalean, bi sare desberdinez osatuta daude, Generative eta Discriminative deiturikoak. 

Hauen helburua, kasu askotan, data sortzea izaten da. Lehenengo motako sareek data sortzen 

ikasten dute eta bigarren motakoek data benetakoa den edo asmatutakoa den bereizten 

saiatzen dira. Horrela, datuak gero eta hobeago sortzerakoan discriminative den sareak gero 

eta emaitza txarragoak emango ditu, eta beraz, zuzenketa gogorragoak izango ditu bere 

pisuetan. Bestela, justu kontrakoa gertatuko litzateke eta generative dena zuzenketa 

nabarmenagoak izango lituzke.  

 

3.4.4 Deep Reinforcement Learning 

Azken mota honetako sareek ingurumenetik ikasten dute. Normalean robotikan erabili ohi dira 

eta esperientziatik hobetzen duten ereduak dira. Hasiera batean ausazko portaera bat izango 

dute eta gero eta saiakera gehiago egin orduan eta emaitza hobeagoak izango dituzte. 

 

Ondorengo bideoetan aipatutako Convolutional Neural Networks, Recurrent Neural Networks, 

Generative Adversarial Netwroks eta Deep reinfocement Learning metodoen adibideak ikus 

daitezke. 

3.5 Abantailak vs Desabantailak 

Bukatzeko, sareen abantailarik handiena ia edozer egiteko gai direla da. Gainera berrerabili 

daitezke, hau da, demagun katuak detektatzen dituen sare bat dugula baina txakurrak 

detektatu nahi ditugula. Orduan, sare berri bat zerotik hastea ez da beharrezkoa izango. 

Katuetarako erabiltzen den saretik abiatuz denbora gutxiagoan txakurrak detektatzen dituen 

eredu bat lortuko dugu. Bestalde, interpretatzen oso zailak dira, normalean ehunka edo milaka 

neurona erabiltzen dira geruza bakoitzean eta bakoitzak zer egiten duen jakitea zaila izaten da.  
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4. Entrenamendu, test eta balioztatze multzoak 
Supervised Learning eta  Sare 

Neuronalen kasuetan, ereduak garatzeaz 

aparte hauen kalitatea ere neurtu 

beharko da. Eginkizun honetarako 

ereduak garatzeko erabilitako datu 

berdinak erabili ezkero, kasu erreal 

batean (eredurako ezezagunak diren 

datuekin) baino emaitza hobeagoak 

lortzea gerta daiteke. Hori saihesteko, 

normalean, eskuragarri dauden datuak 

hiru multzotan banatzen dira: 

Entrenamendurako multzoa, balioztatze 

multzoa et test multzoa.  

Hasteko, entrenamendurako multzoak eredua ikasteko erabiliko diren datuak izango ditu. 

Hauek aurreko orrietan azaldutako parametroak, normalean pisuak, ikasteko erabiltzen dira. 

Entrenamendurako multzoarekin batera balioztatzeko multzoa ere aukeratzen da. Bigarren 

multzo honen helburua ereduen hyperparametroak aukeratzea eta entrenamenduaren 

overfiting-a kontrolatzea izango da. Multzo hau, adibidez, sare neuronalen geruza kopurua edo 

aktibazio funtzioak aukeratzeko erabiltzen da. Sare neuronalen kasuan, sare mota desberdinak 

definituko lirateke, entrenamendurako multzoa erabiliz hauen pisuak kalkulatuz. Hau egin 

ostean, lortutako ereduak balioztatze multzoko datuetan aplikatu eta lortutako emaitzak 

aztertuko dira, hyperparametro hoberenak dituen sarea aukeratuz. Azkenik, test multzoa 

eredu finalaren kalitatea neurtzeko erabiltzen da. Datu hauetan eredua aplikatuko zen, 

aurretik finkatutako emaitzekin konparatuz. 

Hiru multzo hauen erabileraren adibide moduan, sare neuronal baten kasuaren prozesua 

ondokoa litzateke : 

1. Entrenamendu multzoko datuekin eredu finalerako hautagaiak izango diren sare 

desberdinak sortzen dira . 

2. Balioztatzeko multzoko elementuak lortutako ereduetan aplikatzen dira. 

3. Lortutako emaitzak aztertzen dira, hyperparametro egokienak dituen sarea aukeratuz. 

Hemen, eredua balioztatze multzoko datuetarako egokituta egotea gerta daiteke. 

4. Balioztatze prozesuko ereduak test multzoan lortzen dituen emaitzak aztertzen dira. 

4.1. Accuracy, sensitivity, specificity, F-measure moduko neurriak erabiliz. 

5. Lortutako emaitzak egokiak ez badira. 

5.1. Eredu ez da egokia izango. 

5.2. Eredu berriak garatu beharko dira. 

6. Lortutako emaitzak onak badira. 

6.1. Eredu finala lortu da, kasu errealetan testatzeko prest dago. 

4.1. Multzoak definitzen 

Machine Learning-aren munduko egoera askotan gertatzen den moduan, multzoak aztertzen 

den problemaren arabera eta eskura dauden datuen arabera aukeratuko dira. Garatuko den 
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eredua hyperparametro gutxi baditu, adibidez, balioztatze multzo txiki batekin nahikoa 

litzateke. Kontrako kasuan, hauen kopurua handia bada, balioztatze multzoa handitzea 

gomendagarria litzateke. Bestalde, eskura dauden datuen kopurua txikia bada, baliteke datu 

guztiak eredua garatzeko behar izatea, kasu optimoa ez bada ere. 

Hau kontuan hartuta, kasu idealean hasierako multzoa bitan banatzen da, eredua garatzeko 

multzoa eta test-erako multzoa. Hemen, ereduarentzako multzoa test multzoa baino 

handiagoa izatea gomendatzen da. Hasierako banaketa egin eta gero, ereduaren multzotik 

entrenamendurako eta balioztatzerako erabiliko diren multzoak lortzen dira. Bigarren pausu 

honetarako Cross-validation edo balioztatze-gurutzatua deituriko teknikak erabili ohi dira. 

Balioztatze-gurutzatu mota desberdinak daude eta hauek bi multzotan banan daitezke: 

balioztatze gurutzatu sakonak eta balioztatze gurutzatu ez sakonak. Ondoren bi multzo 

hauetako metodo batzuk aipatu eta azalduko dira: 

 

1. Balioztatze gurutzatu sakonak: 

1.1. Leave-one-out balioztatze gurutzatua 

1.2. Leave-p-out balioztatze gurutzatua 

2. Balizotatze gurutzatu ez sakonak: 

2.1. K-fold edo k-hosto balioztatze gurutzatua 

2.2. Holdout metodoa 

2.3. Monte Carlo balioztatze gurutzatua 

Balioztatze gurutzatu sakonek multzoan existitzen diren konbinazio guztiak kontuan hartzen 

dituzte. Leave-one-out kasuan, adibidez, eredurako erabiliko den multzoa ) elementu baditu 

entrenamendurako ) ! 1 hartuko ditu, faltatzen den elementua balioztatze prozesurako utziz. 

Gauza bera ) aldiz egingo litzateke bakoitzean elementu desberdin bat balioztatzerako erabiliz. 

Leave-p-out metodoa, aldiz, aurreko kasuaren orokortasun bat da. Hemen, iterazio bakoitzean ) − * elementu entrenamendurako erabiliko dira * kasu balioztatze prozesurako utziz. Ohartu 

lehenengoaren kasuan ) elementurako 	) konbinazio posible bakarrik dauden arren leave-p-

out metodoaren kasuan konbinazio kopurua () elementurako ��� konbinazio) askoz handitzen 

dela. Adibidez, demagun ) = 50 eta * = 2 ditugula, orduan leave-one-out kasuan 50 

konbinazio konprobatuko litzateke eta leave-p-out-ren kasuan, aldiz, ��·� = 1225. 

Bestalde, balioztatze gurutzatu ez sakonen kasuan ez dira zertan aukera posible guztiak aztertu 

behar. Hemen, k-hosto balioztatze gurutzatuan ereduarentzako aukeratutako multzoa ausaz ? 

azpimultzotan banatzen da. Ondoren, azpimultzo bat balioztatzerako gordeko da, beste ? − 1 

azpimultzoak entrenamendurako erabiliz. Bukatzeko, leave-one-out-en gertatzen zen moduan, 

prozesua ? aldiz errepikatuko da iterazio bakoitzean balioztatzeko azpimultzo desberdin bat 

erabiliz. Holdout metodoari dagokionez, aldiz, eredurako erabiliko den multzo bi azpimultzotan 

ausaz banantzen da, aurretik finkatutako proportzio batean (kontuan hartu, normalean, 

entrenamendurako azpimultzoa balioztatzeko azpimultzo baino handiagoa izatea 

gomendatzen dela). Kasu bi hauetan azpimultzo bakoitzean dauden elementuek antzeko 

banaketa izan behar dute, hau da, azpimultzo guztiek aztertzen diren elementu mota 

guztietako adibideak izan behar dituzte. Bukatzeko, Monte Carlo balioztatze gurutzatua dugu. 

Kasu honetan portzentaje bat aurretik finkatzen da, demagun %80. Orduan, ausaz datuen %80-
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a entrenamendurako hartuko dira eta beste %20-a balioztatzerako. Hau egin ostean, prozesu 

berdina hainbat aldiz errepikatuko lirateke. 

4.2. Overfitting-a antzematen 

Lehenago aipatu den moduan, balioztatze multzoa overfiting-a antzemateko ere erabiltzen da. 

Horretarako, algoritmoak aplikatzen diren heinean, iterazio bakoitzean lortutako erroreak 

aztertzen dira, bai entrenamenduko multzokoa baita balioztatze multzokoa ere . Ondoren, 

erroreen bilakaera modu grafiko batean ikus daiteke: 

 

Grafikoan ikus daitekeen moduan entrenamenduko errorea beti txikitu edo konstante 

mantenduko da. Hau beti gertatuko da, elementu berdinak algoritmoa entrenatzeko erabiltzen 

direnez iterazioak pasa ahala datu berdinekin gero eta emaitza hobeagoak emango baititu. 

Bestalde,  25. iteraziotik aurrera balioztatze datuen errorea txikitzen gelditu eta handitzen 

hasten da. Puntu horretan algoritmoak informazio berria ikasteari utzi eta entrenamenduko 

datuen emaitzak ikasten hasiko da eta, beraz, kasu honetan lor daitekeen modelorik onena 

iterazio kopuru horrekin izango da. 
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Autokorrelazio espaziala eta bero mapak 

Egin den Euskal Autonomi Erkidegoko hotel eta pentsioen azterketarako erabilitako datuak bi 

iturri nagusitik etorri dira: web plataformetatik eta Euskal Estatistika Erakundearen, Eustat, 

turismoko direktorioetatik. 

Eustat erakundeari dagokionez, Establezimendu Turistiko Hartzaileen Inkestako datuak erabili 

dira. Hauek, hoteli eta pentsioei buruzko informazio gehigarria dituzte: Kategoria, Okupazioa, 

logela kopurua, estratoa, koordenatu geografikoak… 

Web plataformei dagokienez, Eustat erakundeak garatutako web scraping teknika 

pertsonalizatu baten bitartez EAE-ko hotel eta pentsioen prezioak lortu dira. Gainera, prezioek 

denboran bariazioak eduki ditzaketenez, aztertzen den eguna baino 120 egun lehenagotik 

egun horretako hotelaren prezioa egunero hartu egin dira, egoerarik optimoenean hotel eta 

egun bakoitzeko 120 prezio lortuz. Behin hotel eta egun bakoitzeko 120 datu inguru edukita 

horiek laburbildu egin dira, kasu bakoitzeko prezio bakarra izateko. Helburu horrekin, lortutako 

elementu guztien mediana kalkulatu da. Estatistiko honek muturreko balioen eragina 

ezabatzen baitu eta, beraz, hasierako aurreprozesatze moduan balio dezake.  

Pentsa daitekeen moduan Eustat erakundeko datu baseko hotel guztiak ez dira web 

plataformetan agertu. Hala ere, Erkidegoko hotel eta pentsioen %80 inguruko kobertura lortu 

egin da. 

Behin bi iturrietako informazioa fusionatu eta gero ondoko pausuak jarraitu dira: 

1. Outlier azterketa. 

2. Balio galduen inputazioa. 

3. Hotelen analisi espaziala. 

4. Bero mapa. 

Egindako analisi guztiak R programazio lengoaian egin dira. Programazio lengoaia hau 

estatistikaren munduan erabilia izateaz gain, azken urteetan machine learning munduan 

indarra hartu du. R-n programatzeko Rstudio Garapen Ingurune Integratua (IDL ingelesez) 

erabili da, duen kode editoreaz, debugging tresnez eta ikustarazte tresnez baliatzeko. 
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5. Outlier azterketa 

Lan egiteko erabiltzen diren datuak modu automatiko baten lortzen direnez hauek txarto 

hartzeko aukera existitzen da (scraping-aren prozesuan arazoren bat egon delako, web 

orrialdearen arazo batengatik…). Txarto hartutako balioak, txarto egonda ere, denboran hurbil 

hartutako datuak bezalakoak badira etorkizuneko analisietan ez dute zertan eragin handia izan 

behar. Bestalde, errore hauek muturreko balioak edo oso arraroak badira, etorkizunean eragin 

negatiboa izan dezakete.  

Scraping-a egin eta gero egun bakoitzerako lortutako datu guztien mediana kalkulatzen denez 

prozesuan ateratako balio arraro asko jada desagertzen dira. Hala ere, honek ez ditu 

muturreko balio guztiak ezabatzen eta azterketa sakonago bat egitea beharrezkoa egiten da: 

 

Balio arraroen artean hiru mota nagusi daudela esan daiteke: 

1. Outlier: Datuen kopuru txiki bat, bata bestearengandik eta gehiengoaren multzotik 

bananduta daudenak. 

2. Anomalia: Datuen kopuru txiki bat, kategoriaduna normalean, bata bestearengandik 

hurbil baina gehiengoaren multzotik urrun daudenak. 

3. “Novelty”: Ezezaguna den kategoria berri bat osatzen duten puntuak. 

Gure kasuan lehenengo bi motatako balioak eduki ditzakegu. Alde batetik, outlierrak aurreko 

irudian ditugun puntua bezalakoak diren datuak izango dira. Hemen, “ezinezkoa” den balio 

baten aurrean baikaude. Bestetik, anomaliak egun bereziak izango lirateke, zubiak, jai egunak, 

asteburuak... Ondoko irudian ikusten den moduan, azaroaren 11-an hainbat hotelek balio 

arraroak dituzte. Hala ere, fenomeno hau hainbat kasutan gertatzen da, ez da hotel bakarreko 

gauza.  
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5.1. Hotelak konparagarriak egiten 

Hotel desberdinei irizpidea berdina aplikatzeko hauek eskala berdinean egotea beharrezkoa 

da. Hau da, 5 izarreko hotel baten prezioa ez da inoiz izar bateko pentsio baten prezioarekin 

konparagarria izango. Modu berean, Donostiako pentsioak, orokorrean, ez dituzte Gasteizeko 

pentsioen prezio eremu berdinak. Ondorengo grafikoan 5 izarreko hotel baten eta pentsio 

baten prezioak ikus daitezke. 

 

Karratu gorri batez markatutako balioa outlier bat dela badirudien arren bi hotelak batera 

aztertzerakoan gerta daiteke puntu hau bost izarreko balioen artean ez nabarmentzea. Arazo 

hori saihesteko hotelak eskala berdinera pasatu dira. Horretarako, hotelen prezioa aztertu 

beharrean prezioen bariazioa aztertu da, hilabeteka. Hilabeteko balio minimoak oso 

egonkorrak zirela ikusita, hilabete bakoitzeko minimoari 100 balioa esleitu zaio. Hori eginda, 

beste balioei minimoarekiko duten igoerarekiko proportzionala den balioa esleitu zaie. Hau da, 

hilabeteko minimoa 200€ bada eta hilabete berdinean 600€-ko balio bat badago, minioa duen 

puntuari 100 balioa esleituko zaio eta 600 duenari 300. Hau eginda, lehen aztertutako hotel 

berdinak aztertuz ondoko grafikoa edukiko genuke: 

 

Ikus daitekeen moduan, hasiera baten outlierra zela pentsatzen genuen puntua kasu honetan 

argi eta garbi nabarmentzen da. 

5.2. Grubbs-en metodoa 

Grubbs-en testa outlier bakarra aurkitzen duen testa da. Honek aztertutako datuen maximoa 

eta minimoa aztertzen ditu eta hauetako bat outlierra den esaten digu. Horretarako, 
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aztertutako elementuen eta hauen batez bestekoaren arteko distantzia maximoa duen 

elementua aztertzen du desbiderapen estandarra kontuan hartuz: 

¿ � �02	��,..,® |ÀM\ÀÁ|
� . 

Test hau R softwar-aren outlier paketean eskuragarri dago grubbs.test() funtzioaren bitartez. 

Funtzio honek aztertutako elementuen maximoa edo minimoa balio estremoak diren esaten 

digu. Horretarako, 0 ≤ * ! �0Y(� ≤ 1 estadistiko bat bueltatzen digu. Balio hori, guk 

finkatutako dugun muga batekin batera, elementu bat outlier-a den edo ez jakiteko balioko 

digu. 

5.3. Hotelak aztertu 

Egindako outlier azterketan, lehenik eta behin hotelak bakarka aztertu dira. Konturatu puntu 

honetan outlierrak diren baino puntu gehiago aterako direla, hemen anomaliak ere agertuko 

baitira. Prozesu hau hilabeteka egin da, horrela, hile berri bateko datuak lortzerakoan ez dira 

aurreko hilabeteko datuak beharko. 

5.4. Egunak aztertu 

Hotelak aztertzeaz gain, egunak ere aztertu dira. Hau eginda, egun bateko gertaera berezi 

bategatik (festak, oporrak, ekitaldiak…) hotelek prezio igoera orokor bat izan badute puntu 

horiek ez dira outlier moduan hartuko. Azterketa hau lurraldeka egin da, lurralde bakoitzak 

bere jai propioak baititu. 

5.5. Emaitzak bateratu 

Azkenik, gure datuen outlier moduan aztertutako kasu bietan outlier moduan agertzen diren 

puntuak bakarrik hartu dira. Beste modu batean esanda, balio bat outlierra izango da baldin 

eta soilik baldin bere hotelaren balioen  artean outlier-a bada eta bere egunean outlierra bada. 

5.6. p-balioa 

Bukatzeko, lehen komentatu den moduan grubbs-en testak * − �0Y(� bat bueltatzen du eta 

muga bat definitu behar da non * < �ÂQ0 bada aztertutako puntua outleirra izango den. 

Horretarako, ditugun datuen outleir-ak eskuz markatu dira eta * − �0Y(� desberdinen 

konbinazioak (bat hotelen azterketarako eta beste bat egunen azterketarako) lortutako 

emaitzak eskuz markatutako emaitzekin konparatu dira. Ondoko grafikoan lortutako balioen 

konparazioa dago non puntu desberdinak * − �0Y(� bikote desberdin bat adierazten duten.  

Lerro urdinak markatutako outlier-etatik aurkitu ez direnak dira, laranjak aldiz normalak diren 

eta outlier moduan markatu diren puntuak dira eta berdeak, azken bi motako erroreen batura 

da: 
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Hau eginda, * ! �0Y(�-aren muga definitzeko orduan ondo irizpidea jarraitu da: 

1. Errore kopuru totala (marra berdea) minimizatzen dituzten * ! �0Y(�-ak aztertu. 

2. Outlier gehien aurkitzen dituen * ! �0Y(�-ak aukeratu (marra urdina minimizatu). 
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6. Balio galduen inputazioa 
Outlierrak detektatu eta gero hauekin zer egingo den erabaki behar da. Gure kasuan balio 

horiek ezabatu eta egun horretako datuak inputatzea erabaki da, balio galduekin batera. 

Horretarako, R-k baliatzen duen imputeTS paketea erabili da. Pakete honek denbora serieen 

inputaziorako hainbat metodo ditu: na.seasplit, na.seadec, na.interpolation, na.kalman… Gure 

kasu partikularrean serieak aldizkakotasuna dutela esan daiteke, hau da, normalean 7 eguneko 

patroiak ikus daitezke non ostiral eta larunbatetan prezioa gora doan.. 

Inputazio metodoa aukeratze irizpideak eta emaitzak azaldu baino lehen aldizkakotasuna dute 

serieekin lan egiteko gomendatzen diren funtzio nagusiak ikusiko ditugu: na.seasplit, 

na.seadec, na.kalma. 

6.1 na.seasplit 

Ikusiko dugun lehengo funtzio honetarako egin beharreko lehenengo pausua aztertuko den 

seriearen aldizkakotasuna adieraztea da. Horretara, gure 2 hotel baten prezioaren serieari 

denbora serie formatua, R-n, emango diogu: x<-ts(x, frequency=7). Hau egiterakoan 

7 eguneko aldizkakotasuna dagoela adierazten dugu. Hau eginda, metodoak serie originaletik 7 

serie desberdin aterako ditu (bat asteko egun bakoitzeko). Adibidez demagun hotel baten 

prezio normalizatuen serie bat dugula non astelehenak laranjaz nabarmendu diren: 

 

Orduan metodoak ondorengo argazkian ikus daitekeen seriearen moduko beste 7 aterako 

lituzke: 

 

Hau egin eta gero serie bakoitzari nahi den inputazio metodoa aplikatzen zaio, imputeTS 

paketeko aukera posibleetatik: ARIMA, inerpolazioa, Basic Estructural Models… 
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6.2 na.seadec 

Aurreko kasuan gertatzen zen bezala, hemen ere gure seriea 7 eguneko aldizkakotasuna duela 

adierazi beharko dugu. Hau egin ostean serieari aldizkakotasuna kentzen zaio geratzen den 

seriea inputatzeko. Orduan, inputatutako serie sinpleari aldizkakotasuna gehituko litzaioke. 

Ondorengo irudietan ikus daitekeen moduan: 

 

Hemen, ezkerrean hotel baten prezioaren eboluzioa ikus daiteke, hainbat balio galduekin. 

Orduan, eskumako zatian ikusten den moduan seriearen aldizkakotasuna (serie laranja) 

baztertuko litzateke. Hau eginda, geratzen den serieari (urdina) nahi den inputazio metodoa 

aplikatuko litzaioke (ARIMA, inerpolazioa, Basic Estructural Models…) eta lortutako 

inputatutako serieari aldizkakotasuna berriro gehituko litzaioke. 

6.3 na.kalman 

Funtzio honek aztertzen den seriearen modelizazioan oinarritzen da. Funtzioari seriearen 

edozein eredu pasa lekioke, kasuaren beharren arabera, baina funtzioak berak ere baditu 2 

modelizazio metodo integraturik: auto.arima eta  StructTS. Funtzio honen oinarria kalmanen 

filtroetan dago.  

Kalmanen filtroak, Linear Quadratic Estimation (LQE) moduan ere ezagutzen direnak, 

ezezagunak diren balioak estimatzeko denboran zehar hartutako balioak erabiltzen ditu. 

Horretarako denbora leiho bakoitzeko bildura probabilitate banaketa bat estimatzen du. Eredu 

hau Hidden Markov Models tekniken antzekoa dela esan daiteke, egoera espazioa jarraitua 

izanda eta aldagaiak banaketa Gaussiarra edukiz. 

6.4 Inputazio optimoaren aukeraketa 

Inputazio metodo finala aukeratzeko garaian, outlierrekin jarraitutako antzeko prozesu bat 

jarraitu da. Hemen, osoak eta outlier barik (150 inguru) zeuden serieak hartu dira eta ausaz 15-

20 puntu tartean kendu zaizkie. Ondoren, metodo desberdinak serie hauetan aplikatu eta 

lortutako emaitzak jatorrizko serie osoekin konparatu dira. Serieen balio galduak gehienbat 

asteburuetan pilatzen direla antzeman denez (ikusi hurrengo irudia), serie osoetatik 

asteburuetako balioa baztertzeko probabilitatea handitu egin da. 
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Inputatutako seriearen eta serie originalaren arteko aldea neurtzeko batez besteko errore 

koadratikoa erabili da. 

Prozesu hau 20 aldiz egin da ImputTS paketeko funtzio bakoitzeko eta gauza bera egin da 

hotelen eguneko prezio minimoekin ere (prezio hauek egonkorragoak dira eta aldizkakotasuna 

nabariagoa dute). Hurrengo argazkian aldi bakoitzean eta metodo bakoitzean lotutako errorea 

ikus daiteke: 

 

Hemen ikus daitekeen moduan errore minimoa dutenak na.seadec funtzioa MA,kalman, 

interpolation eta stine-interpolation eta na.kalman StructTS ereduarekin dira: 
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Eta gauza bera gertatzen da prezio minimoak aztertzerakoan: 

 

Datu guzti hauek kontuan hartuz, na.seadec funtzioa kalman filtroarekin erabiltzea erabaki da. 
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7. Autokorrelazio espaziala 

Izan bedi Ω � {wI: i � 1,… , n} espazialki egituratutako multzoa (aztertzen ari garen hotelen 

multzoa adibidez) orduan, autokorrelazioa espaziala Ω maparen antolaketa eredua aztertzean 

datza. Puntu batean aztertutako egituraren magnitudearen balioa erlatiboki altua (baxua) 

bada, gure kasuan hotelen prezioa izango zena, eta bere inguruneko magnitudeen balioak ere 

altuak (baxuak) badira, orduan autokorrelazioa positiboa (altua) izango genuke. Aldiz, 

aztertutako kokapen zehatz batean magnitudearen balioa erlatiboki altua (baxua) bada eta 

magnitude horren balio baxuz (altuz) inguratuta badago, autokorrelazio negatiboa (baxua) 

dagoela esan daiteke. Aldagaiek beraien inguruko aldagaiekiko balio antzekoak edo 

desberdinak hartzeari dependentzia espaziala deritzo eta antzekotasun edo desberdintasun 

hori neurtu ahal izateko autokorrelazio espazialaren indizeak erabiltzen dira. 

7.1 Oinarrizko definizioak 

Korrelazio indize hauek kalkulatzeko orduan badaude beharrezkoak diren bi elementu: Pisuen 

matrizea eta egitura matrizea. Pisuen matrizea, ¬ = [*	,], elementuen balioen menpekoa da, 

matrize karratua da eta bere balioak absolutuan hartzen baditugu simetrikoa izango litzateke. 

Bestalde, egitura matrizeak, ¢ = [0	,], elementuek espazioan duten egitura adierazten du eta 

simetrikoa da.  

Egitura matrizea definitzeko modu asko daude, adibidez, elementuen arteko distantzia 1	,  

kontuan har daiteke 0	, = �
�M� moduan definituz. Kasu honetan kontu handia izan behar da 

1	, = 0 denean. Egitura matrizeko elementuei ere 1 balioa eman ahal zaie ondoz ondoko 

elementuak badira eta 0 kontrako kasuan.  Hotelen kasuan, ondoz-ondokotasun kontzeptu hau 

estrato, herri edota lurralde historiko berdinean egotea adieraz dezake. Bukatzeko, normalean 0		  osagaiari 0 balioa ematen zaio. 

Behin matrize hauek definituta autokorrelazio indize bat ondoko itxura edukiko luke: 

Γ = +��0	,*	,,	
. 

Korrelazio indizeak definitu baino lehen erabiltzen diren estatistiko espazial desberdinak 

definituko dira. Hasteko, º	 elementu bakoitzak ¢	  pisu espaziala izango du, ondoko eran 

definitzen dena: 

¢	 =�0	,,
. 

Hauek jakinda multzoko pisu totala ere definitu daiteke: 

¢$�U =�¢	 =��0	,,		
. 

Konturatu0		 = 0 denean ¢$�U bikoitia izango dela, 0	, = 0,	 baita. Behin elementu 

bakoitzaren pisua eta pisu totala definituta, hauekin egokitutako media eta bariantza 

definitzen dira. Gure kausan º	 hotel bakoitzaren prezioa 2	 moduan adieraziko dugu. 

Hasteko, egokitutako media ondoko eran definitzen da: 
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2«ÁÁÁ � 1¢$�U�¢	2		
. 

Media berri honen ezaugarri nagusia bere inguruan elementu gehien (gutxien) dituzten 

elementuek balio finalean eragin handiagoa (txikiagoa) izango dutela da. Hotelen kasuan, 

adibidez, Donostia moduko hiri baten hotelek pisu handiagoa izango dute Galdakaon egon 

daitekeen hotel batekin konparatuz. Ohartu media honek ohikoak betetzen dituen 

propietateak ere betetzen dituela: 

1¢$�U�¢	(2	 − 2«ÁÁÁ) = 1¢$�U�¢	2	 − 1¢$�U ¢$�U2«ÁÁÁ		
= 0. 

 

 

Egokitutako bariantza modu baliokide batean definitzen da: 

�«� = 1¢$�U�¢	(2	 − 2«ÁÁÁ)�	
. 

Mediaren kasuan gertatzen zen moduan, elementu asko dituzten inguruneetan dauden 

elementuek eragin handiagoa izango dute isolatutako elementuekin konparatuz. Behin 

estatistiko pare hau definituta, hurrengo pausu logikoa estandarizatutako aldagaiak definitzea 

litzateke. Aldagai berri hauen egokitutako media 0 eta egokitutako bariantza 1 izango litzateke: 

/	 = 2	 − 2«ÁÁÁ�«� . 
Hortaz aparte, hotel bat bere ingurunearen bitartez karakteriza daiteke. Horrela, º	elementuaren ingurunea ondoko eran laburbildu daiteke: 

yI = 1AI�aIÉxÉÉ
. 

Modu honetan lortzen diren elementuek 2	 elementuen media mantentzen dute eta hauek 

osatzen duten multzoa hasierako multzoaren leunketa baten modukoa izango litzateke. 

7.2 Indize globalak 

Behin oinarrizko kontzeptuak definituta korrelazio indizeak ikusteko ordua iritzi da. Lehen esan 

bezala, indizeak normalean ondoko itxura dute: 

Γ = +��0	,*	,,	
. 

Ikusiko dugun lehen indizea Moran-ena da. Honek pisu moduan estandarizatutako elementuen 

biderketak hartzen ditu, *	, = (^M\^̅)�
(^�\^̅)� 	. Gure kasuan alde espaziala aztertzen gaudenez 

egokitutako media eta bariantza erabiliko ditugu, *	, = /	/,. Beraz, Moranen egokitutako 

indizea ondokoa litzateke. 
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Ë∗ = 1¢$�U��0	,/	/,,	
= 1¢$�U��0	,(2	 − 2«ÁÁÁ�«� )(2, − 2«ÁÁÁ�«� )

,	
. 

Indize honek gero eta balioa altuago eduki orduan eta korrelazio altuagoa adieraziko du. Modu 

berean, gero eta balio negatiboagoa hartzerakoa orduan eta korrelazioa baxuagoa izango du. 

Beste indize bat Geary-ren indizea litzateke. Honek, pisu matrizeko elementu moduan 

estandarizatutako elementuen kenketak ditu. Beraz, egokitutako Gearyren indizearen kasuan *	, = /	 − /, edukiko genuke: 

�∗ = 12 1¢$�U��0	,(/	 − /,),	
= 12 1¢$�U��0	, #2	−2,%

�
�«�,	

. 
Geary-ren indizearen kasuan balio positiboak hartuko ditu. Hemen, gero eta zerotik hurbilago 

egon orduan eta korrelazio altuagoa dagoela adieraziko da.Gainera, gero eta balio altuagoa 

hartu orduan eta korrelazio negatiboagoa dagoela adieraziko da. 

Hirugarren indizea Lebart-en indizea litzateke. Kasu honetan, egokitutako Lebarten indizea pisu 

moduan elementuen eta hauen ingurunearen arteko kenketaren karratua, *	, = (^M\�M)`�Ì̀ , 
hartuko luke: 

R∗ = 1¢$�U��0	, (2	 − 3	)��«�,	
= 1¢$�U�¢	 (2	 − 3	)��«�	

. 
Gearyren kasuan gertatzen den moduan, hemen ere indizea gero eta 0 baliotik hurbilago egon 

orduan eta korrelazio positiboagoa egon da. Aldiz, gero eta balio altuagoa eduki orduan eta 

korrelazio negatiboagoa adieraziko du. 

Laugarren indizea [11] lanean definitutako Í� indizea da. Honek pisu matrizeko elementu 

moduan elementuen ingurunearen eta egokitutako mediaren arteko kenketen karratuak *	, = (3	 − 2«ÁÁÁ)� ditu: 

Í�∗ = 1¢$�U��0	,(3	 − 2«ÁÁÁ)��«�,	
= 1¢$�U�¢	 (3	 − 2«ÁÁÁ)��«�	

. 
Bukatzeko, aipatutako lan berdinean agertutako beste indize bat, Í� indizea, definituko da. 

Honen kasuan, *	, = #3	 − 2,%� elementuaren ingurunea beste elementuekin konparatzen da 

kenketaren bitartez eta karratua kalkulatzen da: 

Í	�∗ = 1¢$�U��0	, #3	 − 2,%
�

�«� 		
,	

. 
Azkeneko bi indize hauek ere 0 baliotik hurbil daudenean autokorrelazio positiboa adierazten 

dute eta gero eta balio handiagoa izan orduan eta korrelazio negatiboagoa izango du.  
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7.3 Indize lokalak 

Indize globalek multzo osoaren korrelazio espaziala neurtzen duten arren, aztertutako 

elementu bakoitzak korrelazioa espazial totalean duen eragina ere ikustea interesgarria 

litzateke. Horretarako, korrelazio indize lokalak definitzen dira. Indize hauek Anselin [2] 

proposatutako irizpidea jarraituz definitzen dira: 

1. Indize lokalek, elementuek indize globalean duten eragina adierazten dute. 

2. Elementu guztiei dagokien indize lokalen batura indize globalarekiko proportzionala 

da. 

Irizpide hori jarraituz aurreko atalean azaldutako indizeen zati lokalak defini daitezke: 

1. Moran:  Ë	∗ = �
«M

∑ 0	,(^M\^ÌÁÁÁÁ
ÎÌ

)(^�\^ÌÁÁÁÁ
ÎÌ

)�
,�� . 

2. Geary: �	
∗ = �

�
�
«M

∑ 0	, <^M\^�
ÎÌ

=
��

,�� . 

3. Lebart: R	
∗ = <^M\�M

ÎÌ
=

�
. 

4. ÏÐ:  Í�	
∗ = <�M\^ÌÁÁÁÁ 

ÎÌ
=

�. 
5. ÏÑ:  Í�	∗ = �

«M
∑ 0	, <�M\^�

ÎÌ
=

��
,�� . 

Hemengo indize lokal bakoitzak º	 hotelak indize globalean duen eragina adierazten du. 

Gainera, indize lokalen konbinazio linealetatik indize globalak lor daitezke. Demagun Γ indize 

globala dela eta Γ	  bere aldagai lokala dela, orduan: 

Γ � 1¢$�U�¢	Γ		
. 

Hau da, indize orokor guztiek elementu guztien indize lokalen baturarekiko proportzionalak 

dira, bereziki, indize orokor guztiek elementu guztien indize lokalen batazbestekoak dira. Hori 

dela eta, hasieran finkatutako irizpide guztiak betetzen direla baiezta daiteke eta, beraz, indize 

lokalak ondo definituta daudela ere. 

7.4. Indizeak hoteletan 

Behin indizeak definituta eta hauek aplikatzen hasi baino lehen pare bat gauza konpontzea 

faltako zen. Alde batetik, egitura matrizea definitu beharko litzateke. Bestetik, hotelen 

prezioetan hauen kokapena ez-ezik kategoria ere eragin handia du. Hori dela eta, kategoriaren 

eragina indargabetu beharko litzateke.  Arazo hau kontuan hartzen ez bada egingo den 

analisiak emaitza okerrak eman ditzake, adibidez, kategori baxuko hotelez inguratutako 

kategoria altuko hotelak kategoriak duen prezioaren igoeraren eraginagatik nabarmentzea 

gerta daiteke eta ez kokapenaren eraginagatik. 

Kategoriaren eragina saihesteko asmoz hiru analisi desberdin jarraitu dira. Hauek hobeto 

ulertzeko demagun ondorengo datuak ditugula: 
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Hotela Kategoria Data Prezioa 

1 H3 2039-08-19 75 

1 H3 2039-11-15 56 

2 H5 2039-08-19 500 

2 H5 2039-11-15 300 

3 P1 2039-08-19 30 

3 P1 2039-11-15 15 

4 H3 2039-08-19 90 

4 H3 2039-11-15 60 

4 H3 2039-07-15 75 

 

Alde batetik, lehenengo konparazioan hotelen prezioak 0 eta 100 arteko balioetara pasatu dira 

bere kategorian duten prezioaren arabera. Beste modu batean esanda, kategoria bateko 

prezio maximoari 100 balioa eman zaio eta besteak modu proportzional batean 0-100 tartera 

pasatu dira. 

Hotela Kategoria Data Balioa_1 

1 H3 2039-08-19 55 

1 H3 2039-11-15 0 

2 H5 2039-08-19 100 

2 H5 2039-11-15 0 

3 P1 2039-08-19 100 

3 P1 2039-11-15 0 

4 H3 2039-08-19 100 

4 H3 2039-11-15 11 

4 H3 2039-07-15 55 

 

Bestetik, hotelen azterketa kategoriaka egin da. Hau da, aztertzen den hotela bere kategoria 

berdina duten hotelekin bakarrik konparatu da. 

Hotela Kategoria Data Balioa_2 

1 H3 2039-08-19 75 

1 H3 2039-11-15 56 

2 H5 2039-08-19 500 

2 H5 2039-11-15 300 

3 P1 2039-08-19 30 

3 P1 2039-11-15 15 

4 H3 2039-08-19 90 

4 H3 2039-11-15 60 

4 H3 2039-07-15 75 

 

Azkenik, hotelen prezioa aztertu beharrean prezioen tendentzia aztertu da. Hemen hotel 

bakoitza banaka aztertu da eta bere prezioak 0 eta 100 tartera pasatu dira. Kasu honetan, 

hotelak bere prezio maximo historiko lortzen duen egunari 100 balioa, minimoa duen egunaria 
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0 balio eta beste egunei balio proportzionalak esleitu zaizkie. Gainera, prezio konstantean 

duten hotelei 50 balioa esleitu zaizkie. 

Hotela Kategoria Data Balioa_3 

1 H3 2039-08-19 100 

1 H3 2039-11-15 0 

2 H5 2039-08-19 100 

2 H5 2039-11-15 0 

3 P1 2039-08-19 100 

3 P1 2039-11-15 0 

4 H3 2039-08-19 100 

4 H3 2039-11-15 0 

4 H3 2039-07-15 50 

Behin kategoriaren eragina minimizatuta egitura funtzioaren aukeraketaren ordua heldu da. 

Hemen ere hiru kasu desberdin aztertu dira, guztietan 0		 � 0 izanik. Hasteko, º	 hotela 

aztertzerakoan 0	, � 1 moduan hartu da baldin eta º, hotela hasierako hotelaren estrato 

berdinean badago.  Bigarren eta hirugarren kasuetarako hotelen arteko distantziak kalkulatu 

dira. Horretarako R softwar-aren geosphere paketeko distHaversine() funtzioa erabili da. 

Funtzio honek bi puntuen arteko distantzia neurtzen du, Lurraren kurbadura kontuan hartuz. 

Bigarren kasuan 0	, = 1 izango da baldin eta soilik baldin º, hotela º	 hotelik, gehienez, 

aurretik finkatutako r distantzia batera badago. Egindako azterketaren kasuan ± = 3?� eta ± = 5?� distantziak erabili dira. Azkenik, hirugarren kasurako hotel guztien eragina aztertu 

nahi izan da. Horretarako, 0	, = �
�M� moduan definitu da non 1	,-ren balioa º	 a º, hotelen 

arteko distantzia den. Horrela, º	 hotel bakoitzaren azterketan beste hotel guztiak kontuan 

hartuko dira, hurbilen daudenei pisu handiagoa emanez. 

Ohartu erabiltzen diren indizeen arabera emaitza desberdinak lortuko direla. Geary-ren 

indizeak, adibidez, aztertutako hotelaren prezioa beste prezioekin konparatuko ditu baina Í�indizeak, aldiz, aztertutako hotela ez du kontuan hartuko, aztertutako hotelaren ingurunea 

eta hotelen multzoko bataz bestekoa konparatzen baititu. Hori dela eta, kontuan hartu diren 

indizeetatik gure kasu partikularrerako erabilgarrienetarikoak zeintzuk diren ikustea egin den 

lehengo gauza izan da. 

Hasteko, Moran-en eta Geary-ren indizeak baliokideak direla froga daiteke [11] beraz, Moran-

ena baztertzea erabaki da, balio positiboekin bakarrik lan egiteko. Gainera, egindako 

proiektuaren helburua hotelen prezioa aztertzea denez Í� eta Í� ez dira azterketan sartuko. 

Hauek ez dute aztertzen den hotelaren prezioa kontuan hartzen, honen ingurunekoak baizik . 

Hau guztia kontuan hartuz geratzen diren Geary-ren eta Lebart-en indizeakin lortutako 

emaitzak aztertu dira, aurretik azaldutako lau egitura matrize mota desberdinekin. 
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8. Bero mapa 

 

8.1. Erabilitako software-a 

Bero mapa garatzeko R software-a erabili da.  Hemen, shiny paketea erabiliz aplikazio grafiko 

bat garatu da non, besteak beste, leaflet eta leaflet.extras paketeen laguntzaz mapa 

interaktibo bat garatu den. 

8.2. Bistaratzen diren datuak 

Garatutako bero mapa ditugun hotelen prezioen informazioa modu desberdinean erakusten 

da. Alde batetik, prezio hutsen bero mapa, bestetik, prezioen tendentzia eta, bukatzeko, 

autokorrelazio espazialaren mapa ikus daiteke. Gainera, zoomaren arabera hotelen balioa 

edota aztertzen den zonaldearen balioa adieraziko du. 

8.2.1. Prezioen bero mapa 

Mapa hau sinpleena da eta, suposa daitekeen moduan, hotelen prezioaren eboluzioa 

erakusten du denboran zehar. Prezioa gero eta altuagoa denean gero eta kolore gorriagoa 

izango du. gero eta prezio baxuagoa denean, aldiz, urdinagoa. Gorri intentsitate maximoa 

aztertzen den hotelaren edo zonaldearen balioa erabiltzaileak finkatzen duen balio baten 

berdina edo altuago denean gertatuko da. 

2019-08-20 2018-09-20 
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8.2.2. Prezioen tendentzia 

Azaldutako lehenengo modalitatearen arazo nagusiena prezioen eboluzioa bistaratzea kasu 

batzuetan zaila dela da. Adibidez, Euskal Autonomi Erkidegoari dagokionez, Donostia aldeko 

prezioa Gasteizkoak baino altuagoak izango dira ia beti eta, beraz, hauek kasu askotan gorri 

intentsitate handia izango dute. Hori saihesteko asmoz, bigarren bistaratze modalitate bat 

garatu da. Hemen, hotelen prezioa azaldu beharrean prezioen tendentzia ikusten da. Hotel 

bakoitza banaka aztertu ondoren honen prezioa 0-100 tartera pasatu da. Hau eginda, prezioen 

eboluzio orokorra ikus daiteke. Adibidez, udan edo aste santuan hotelek prezio igoerak 

dituztela ikus daiteke edota Irailaren erdialdera jaisten hasten direla era. 

2017-08-20 (Summer) 2017-09-20 

  

2018-03-23 2018-03-30 (aste santua) 

 
 

 

8.2.3. Korrelazio espaziala 

Bukatzeko korrelazio espazialeko indizeak ematen diguten informazioa ere bistaratu daiteke. 

Ikusi dugun moduan, autokorrelazioak, aztertzen ditugun datuak beraien artean antzekoak 

diren edo nabarmentzen den baten-bat dagoen adierazten digu. Ohartu kasu honetan 

detailera joan behar dela informazioa lortzeko zeren eta, orokorrean, Euskal Autonomi 

Erkidegoko hotel guztiak bere inguruko hotelen antzekoak baitira. Adibidez, hurrengo 

argazkietan ikus daitekeen moduan, azaroaren 3-an zoom urrun batetik nabarmentzen den 

hotelik ez dagoela pentsa daiteke, hala ere,  Donostialdean zoom-a egiterakoan alde zaharrean 
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nabarmentzen den pentsio bat dagoela ikus daiteke. Kasu honetan, gaua 360 eurora dago bere 

inguruko pentsioek 50-100 tarteko prezioa dutelarik. 

2018-11-03 

  

 

8.3.Funtzionalitate gehigarriak 

Aplikazioari informazio gehigarria gehitzeko asmoz bero mapari funtzionalitate gehigarri 

batzuk gehitu zaizkio. 

8.3.1. Egunaren datu orokorrak 

 

Aplikazioa zabaltzerakoan bistara datorren lehenengo gauza maparen gainean agertzen den 

kutxa multzoa da. Kutxa hauetan bistaratzen den egunaren datu orokor batzuk ikus daitezke: 

prezio minimoa, batez besteko prezioa eta prezio maximoa. Kutxa hauek kolorez aldatuko dira 

erakusten duten balioen arabera. Gogoratu bero maparen gorri intentsitate maximoa 

markatzen duen balioa erabiltzaileek aukeratzen dutela. Balio horren arabera ere kutxen 

koloreak hautatuko dira. Balioa maximoa baino altuagoa edo berdina bada kutxa gorria izango. 

Bestalde, balio maximoa eta hauen erdiaren arteko balioak baditu, kutxa laranja izango da. 

Bukatzeko, balio honen erdia baino baxuagoa bada, kutxa berdea izango da. 
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4.3.2. Mapa kontrolatzeko menua 

 

Aplikazioak ere badu atal bat mapa modu interaktiboan kontrolatzeko. Hasteko, play eta stop 

botoien bitartez grafikoari mugimendua eman ahal zaio. Mapa mugitzen hasterakoan, 

maparen egoera eguneratzen  den ahala kutxetako balioak ere berristen joango dira. 

  
Honen azpian Hotelak eta Estratoak botoiak ditugu. Hauek, suposa daitekeen moduan, hotelen 

eta estratoen informazio gehigarria emango dute.  

Hotelak botoiari dagokienez, sakatzerakoan hotel bakoitzaren gainean puntu bat agertuko da 

honen informazioa emanez. Hurrengo argazkian ikus daitekeen moduan puntuak kolore 

desberdinekoak izango dira hotelaren kategoriaren arabera. Adibidez, pentsioak kolore morea 

izango dute, hiru izarreko hotelak urdin argia eta lau edo bost izarrekoak gorria. Gainera, sagua 

puntuen gainetik pasatzerakoan hotelaren informazioa azalduko da. Hemen, besteak beste 

hotelaren izena,prezioa, kategoria, probintzia eta logela kopurua adieraziko dira.
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Bestalde, Estratoak botoia sakatzerakoan erkidegoko estrato desberdinak banatzen dituzten 

mugak bistaratuko dira. Hauetan klik egiterakoan fitxa txiki bat azalduko da aztertzen den 

eguneko informazioarekin: estratoaren izenak, hotel kopurua eta bataz besteko prezioa. 

 

Bukatzeko beste lau kutxa daudela ikus daitezke: data, mapa mota, kategoriak eta intentsitate 

maximoa. Datak aztertzen den eguna eskuz aldatzeko ahalmena ematen du. Mapa mota 

atalak, aldiz, ditugun bistaratze aukera desberdinak aukeratzen uzten du, bai bero mapa, bai 

tendentziaren mapa eta baita korrelazio espazialarena ere. Modalitate gehigarri moduan mapa 

hutsa ikustea ere posiblea izango da.  

  

 

Gainera, Kategoriak atalak hotelak kategoriaka filtratzeko aukera ematen du, erabiltzaileari 

interesatzen zaionak bakarrik bistaratzeko. Azkenik, Intentsitate maximoa atalak gorri 

intentsitate maximoa finkatzen duen balioa aukeratzeko balio du. 
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