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Aurkezpena

Azken garaiotan big data gizartearen arlo guztietara zabaldu da. Halaber, estatistika ofizialean,
non erronka bat den bere erabilera datu iturri berri bat bezala. Estatistikako institutuetan
hainbat proiektu pilotu ari dira egiten big dataren ondorioei heltzeko produkzio estatistikoaren
alderdi guztietan.

Eustatek 2016an antolatu zuen Nazioarteko Estatistika Mintegiaren XXIX. edizioa “Big data for
Official Statistics” izenaren pean, zeina Peter Struijsek eman baitzuen, Big Dataren programako
koordinatzailea Statistics Netherlands (SN) izenekoan eta Big Dataren taldearen
koordinatzailea Europar Batasuneko ESSnet (European Statistical System network) izenekoan.

Argitalpen honek ezagutarazi nahi du arlo honetan eginiko ikerketa lana Eustaten
formakuntzako eta ikerkuntzako beketariko baten eskutik. Dokumentu honek bi atal ditu.
Lehenbizikoan errepaso bat egiten zaie ikaskuntza automatikoko metodo batzuei big datan
erabilgarriak eta bigarrenean aztertzen dira Euskal AEko hotel establezimenduetako prezioen
eboluzioa, weba eskrapeatuz lortuak, prezioen korrelazio espaziala eta horien bistaratzea bero
mapen bidez.

Vitoria-Gasteizen, 2019ko martxoan
Josu Iradi Arrieta

EUSTATeko Zuzendari Nagusia
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Atarikoa

Euskal Estatistika Erakundeak (Eustat) 2017. urtean estatistika eta matematika metodologietan
prestatzeko eta ikertzeko emandako bekari esker Machine Learning inguruan egin den lanaren
emaitza da Koaderno Tekniko honetan bildutakoa.

Liburu honek bi helburu nagusi ditu: Gaur egungo machine learning munduan erabiltzen diren
teknika nagusien azalpen bat ematea eta azken bi urteetan zehar Eustaten, Euskal Estatistika
Erakundean, egindako Big Data proiektuaren emaitzak azaltzea. Hori dela eta koadernoa bi atal
nagusietan bananduko da non atal bakoitza lau kapituluz osatuta dagoen.

Lehenengo atalari dagokionez, alde teorikoz osatuta egongo da metodo desberdinen
adibideak emanez. Esan bezala lau kapituluz osatuta egongo da. Lehenengo bi kapituluetan
machine learning munduko bi familia nagusiei buruz, supervised learning eta unsupervised
learning, hitz egingo da. Ondoren, hirugarren kapituluan azken urteetan fama handia hartzen
ari diren sare neuronalei buruz hitz egingo da. Azkenik, laugarren kapituluan erabiltzen diren
algoritmoetarako normalean egiten diren datuen test-balioztatze-entrenamendu banaketei
buruz hitz egingo da.

Bigarren atalari dagokionez, aldiz, lan prozesuan jarraitutako pausuak eta hauei dagokien alde
teorikoa ikusiko da. Bigarren ataleko proiektua Euskal Autonomi Erkidegoko hotelen
prezioaren urtean zeharreko eboluzioa aztertzen du. Azterketa hau egin ahal izateko,
erkidegoko hotelen prezioak web plataformoetatik lortu ziren, Eustat erakundeak garatutako
web scraping prozesu baten bitartez. Datu hauek Eustateko turismo direktorioaren
Establezimendu Turistiko Hartzaileen Inkestako datuekin fusionatu ziren datu base osoago bat
lortuz.

Lortutako datu horiekin EAE-ko ostatuen denboran zeharreko prezioen eboluzioa eta hauek
beraien ingurunearekin duten erlazioa modu intuitibo batean erakusten duen aplikazio bat
garatu da. Aplikazio hau ESRA-k, European Survey Research Association-ek, 2018ko azaroan
Bartzelonan antolatu zuen BigSurv18 konferentzian aurkeztu zen.

Halaber, atariko hau baliatu nahi dut Eustateko Metodologia, Berrikuntza eta 1+Gko Arloa
osatzen duten guztiei, Anjeles lztueta, Jorge Aramendi, Elena Goni, Inmaculada Gil eta Marina
Ayestaran, igaro diren bi urteetan emandako babes eta konfiantza eskertzeko. Modu berean,
Eustateko familia osatzen duten langileei eta Asier Badiola bekadunari eskerrak eman nahi
dizkiet sortutako lan giro onagatik. Bukatzeko, eskerrak nire familiari, Garaziri eta modu berezi
batean nire aitite Alejandro Mugarzari, beti nire alboan egoteagatik.
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Machine learning teknikak

Liburuaren lehengo atal honetan gaur egungo Machine Learning tekniken errepaso bat egingo
da. Machine Learning kontzeptu berri bat badirudi ere bere izena 1959-tik dator. Garai artako
ikertzaileek datuetatik ikasi eta aurreikuspenak egiteko gai diren algoritmoak garatzea
interesgarria zela pentsatu zuten, gaur egungo Machine Learning teknikak guztiak garatzeko
beharrezkoak izan diren lehenengo pausuak emanez.

Esan bezala Machine Learning prozesuaren helburua datuetatik ikastea da eta, hau eginda,
etorkizunean aurreikuspenak egitea. Hemen bi familia nagusi bereizi ahalko lirateke:
Supervised Learning eta Unsupervised Learning. Lehenengoaren helburua, Supervised Learning,
iraganeko datuetatik abiatuz etorkizuneko datuak aurresatea litzateke. Bigarrenarena, aldiz,
datuetatik ikastea da, batzuetan ezkutuak dauden edo begi bistaz ikusi ezin diren informazioa
eta aztertutako elementuen arteko erlazioak ateraz. Bi familia hauei buruz lehenengo bi
kapituluetan hitz egingo da.

Hirugarren kapituluari dagokionez, gaur egun indarra handia hartu duten Sare Neuronalei hitz
egingo da. Machine Learning terminoari gertatzen zaion moduan, Sare Neuronalak gaur
egungo gauza badirudite ere duela denbora bat definitutako metodoak dira, 1943 urtean
alegia. Sare Neuronalek hainbat eginkizunetarako balio dutenez, bai Supervised Learningerako
baita Unsupervised Learningerako ere, kapitulu propio bat merezi zuela erabaki da.

Bukatzeko, Supervised Learning motako tekniketan (mota honetako problemetarako erabiltzen
diren Sare Neuronalak barne) aurreikuspenak egin behar diren heinean hauek ere testatua
behar dira. Hori dela eta, atal honetako azken kapituluan eskuragarri dauden datuak,
algoritmoak garatzeko eta test desberdinak egiteko, banatzeko existitzen diren teknika
desberdinei buruz hitz egingo da.
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1. Supervised learning

Mota honetako teknikak aztertzen den elementu bakoitzeko irteera balio edo etiketa bat
aurresan nahi dugunean aplikatzen dira, hau da, hasierako datu batzuetatik abiatuz irteerako
balio batzuk inferitu nahi direnean. Irteera datuak bai kuantitatiboak, erregresioa, baita
kualitatiboak, klasifikazioa, izan daitezke. Helburu nagusia ez da inoiz datuetatik ikastea izango,
baizik eta sarrerako balioak irteerako balioekin ondo erlazionatzen dituen erregela bat lortzea.
Horrela, etorkizunean datu berriak lortzerakoan, hauei dagokien irteera balioa inferitu ahal
izango dira.

Supervised learning metodoen artean ondokoak aztertuko dira:

1. Erregresio lineala

2. Erregresio logistikoa
3. KNN

4. Perceptron

5. SVM

6.

Decision trees

1.1. Erregresio lineala

Erregresio linealak datu baseko Xj,...,X, elementu bakoitzari dagokion Y;,..,Y, etiketa
kuantitatiboa kontuan hartuz, X' elementu berri bat lortzerakoan, honi dagokion Y'etiketa
kuantitatiboa aurresaten saiatzen da.

Demagun etxe desberdinen metro karratuak eta prezioak dakizkigula eta hauen erlazioaren
grafikoa egiten dugula, eskumako grafikoaren puntu urdinak lortuz. Ikus daitekeen moduan,
lortutako  puntuek metro i
karratuen eta prezioaren

arteko erlazioa lineala dela

suposa daiteke. Orduan, etxe

baten metro karratuak

jakinda honen prezioa

aurresatea interesgarria
litzateke. Erregresio linealak,
funtzio lineal baten bitartez,

X; datuen elementu bakoitza
dagokion Y  etiketarekin 1L 1 )
egokitzen saiatzen da (lerro -
laranja).

1.1.1. Algoritmoa

Y’ etiketa berriak aurresateko, teknikaren izenetik ondorioztatu daitekeen moduan, f(X,6)
funtzio lineala lortzea da helburua, non 8 = {6, ..., 6, } funtzio linealaren koefizienteak diren

eta
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D
Y ~f(X,0) = 90+Zeix+e
i=1

den, € ia beti egongo den errorea izanik.

Erregresio linealaren 8 parametro optimoak errore minimoa ematen dutenak izango dira.

Errorea neurtzeko garaian, normalena f (X, 8) aurresandako balioaren eta elementuaren Y

etiketaren arteko aldea neurtzen da, horretarako distantzia euklidearra erabiliz. Beraz,

minimizatu beharreko balio funtzioa ondokoa litzateke:

Cost(8) = 5-T1. (f(X,0) = ¥)°.

Funtzio hau minimizatzeko, gradient descent algoritmoa erabili daiteke. Algoritmoa

aplikatzerakoan, ondoko pausua behin eta berriz egingo litzateke konbergentzia lortu arte

edota aurretik finkatutako iterazio kopuru maximoa igaro arte:

6 =6 — %, (X[ 0 — Y;)X;,1 < i <nbakoitzeko.

1.1.2. Erlazio ez linealeko aldagaiak

Batzuetan gerta daiteke aldagaien arteko erlazioa
lineala ez izatea, eskumako grafikoan ikus
daitekeen moduan. Kasu hauetan ere erregresio
lineala aplikatzea posible izango litzateke.

Demagun gure datuek p aldagai desberdin
dituztela, orduan aldagai hauen potentziak
aldagai berri moduan erabili daitezke erregresio
lineala datuei hobeto egokitzeko. Erregresioa

linealean 6; koefizienteak linealak izan behar diren arren eskura dauden datuak egokitu

1.1.3. Erregularizazioa

daitezke emaitza hobetzen badu. Adibidez,
aurreko kasuan aldagaien lehenengo lau
potentzia aldagai moduan gehituz, ezkerrean
agertzen den emaitza lortuko genuke. Begi-
bistakoa den moduan, hobekuntza nabaria
lortzen da. Aldagaiei potentzia desberdinak
aplikatzeaz aparte beste hainbat funtzio aplikatu
ahal zaizkie, adibidez, logaritmo funtzioa, erro
karratua, esponentziala eta abar.

Ereduari aldagai berriak gehitzerako garaian lortutako ereduak gure entrenamendu edo

jatorrizko datuak “ikasi” ditzake, etorkizuneko kasu berrietan errore handiagoa emanez.

Fenomeno horri overfitting deritzo eta saihetsi beharreko gauza bat da. Azpiko argazkian

puntako bi kasuak ikus daitezke, bai overfitting bai underfitting kasuak. Bigarren hau dugun

eredua entrenamenduko puntuen izaera ondo islatzen ez duenean gertatzen da.
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Underfitting Good aproximation Overfitting

Overfitting-a saihesteko egin daitekeen gauza bat aldagaiak kentzea da. Hortaz aparte,
erregularizazio parametro deituriko A konstantea balio funtzioari gehitu ahal zaio 6
parametroen penalizazio modura, ondokoa lortuz.

Cost(0) = %Z?:ﬂf(xi: 0) —Y)?% + 12?21 8; (ohartu 8, penalizaziorik ez duela).

Parametro honek balio funtzioaren balioa handitu egiten du 8; parametroen balioa handitu
ahala. Parametro honen balioa handitu ahala, balio funtzioa minimizatzerako orduan
0; (i # 0izanda) elementuen balioa zerorantz joango da eta erregresioak erantzun
konstante bat emango du, 8,. Parametroaren balioa txikitzerakoan, aldiz, lortutako eredua
erregularizaziorik gabeko ereduaren antzekoa izango da. Azkenik, A = 0 kasuan erregularizazio
gabeko ereduaren berdina izanda

1.2. Erregresio logistikoa

Erregresio  logistikoa  klasifikaziorako o

tekniken artean erabilienetakoa dela | o _
esan daiteke. Klasifikaziorako teknika

guztien antzera, erregresio logistikoan

ditugun {x4,..,x,} datu bakoitzeko

{y1, ..., yn} etiketa izango ditugu. Etiketa

hauek bitarrak izango dira, hau da, bi

aukera izango dituzte (bai/ez, bizi/hil...).

Metodoaren helburua, x’ elementu berri ’/

bakoitzari dagokion y' etiketa aurresatea -
da. Kasu honetan, estimatu nahi den
etiketa, edota etiketa positiboa, 1 moduan ikusiko dugu eta bestea 0 moduan.

Erregresio logistikoa, funtzio logistikoa (sigmoid function) deituriko funtzioa erabiliz, elementu
desberdinen aldagaien eta hauen etiketen arteko erlazioa bilatzen saiatzen da.Erlazio hau
jakinda, etiketa desberdineko datuak linealki banantzen ditu. Metodo hau, orokortutako
erregresio linealaren kasu berezi moduan ikus daiteke.
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1.2.1. Algoritmoa

Demagun datuak X multzoan ditugula. Orduan algoritmo honen helburua 6 parametroa, p
tamainakoa, estimatzea da non o(x'78) funtzioak x’' elementuak 1 etiketa izateko duen
probabilitatea adierazten duen,

o(z) =

Erregresio logistikorako parametro optimoak lortzeko, ondoko kostu funtzioa minimizatu
behar da:

1
1+e~%

sigmoid funtzioa izanda.

Cost(8) = — -1, yilog(a(x] 0) + (1 — y)log(1 — o (x[ 6)))

Funtzio hau minimizatzeko, gradient descent erabili daiteke baina baita beste teknika batzuk,
adibidez: conjugate gradient, BFGS, L-BFGS...

1.2.2. Linealak ez diren mugak

Orain arte ikusitakoarekin, muga linealak dituzten
elementu ezberdinak banandu eta aurresateko u

ahalmena badugu ere, normalean datuak ez dira 1 + + *, &
horrelakoak izango. Eguneroko lanean, ohikoena, + * .|,"' LA
linealki banangarriak ez diren mugak aurkitzea da, + * + + 4}1* * 4 +
eskumako adibidean ikus daitekeen moduan. Kasu e T oL vF o,
hauetan, erregresio linealean ikusi dugun moduan, ’ + ¥ s g v ¥ "
aztertzen diren aldagaien potentziak aldagai berri * . ¥ s Tt 4 k. ++
moduan datuei esleitzea pena mereziko luke. Hau " : + N 8 :_ +
eginda, gure metodoa datuetara egokitu daiteke. . v

Ondoko bideoak datuak 5. mailako potentziari igota
gradient descent algoritmoaren pausuen eboluzioa
erakusten du.

1.2.3. Erregularizazioa

Hainbat supervised learning-eko metodoekin gertatzen den moduan, erregresio logistikoan ere
eredua egiteko erabili ditugun datuak “ikastea” eta hauekiko desberdina den datu berri bat
sartzerakoan emaitza txarra ematea gerta daiteke. “Overfiting” fenomeno hau ekiditeko
erregularizazio parametro bat ereduari gehitzea gomendagarria da. Hau kontuan hartuz,
ondoko balio funtzioarekin lan egingo genuke:

Cost(0) = —%Z?zlyi log (a(xl-TH) + (1 -y) log(l — a(xiTH))) + %Z?:l 6;.

Parametro honen eraginez eredua egiterakoan errorea handitzen bada ere, datu berrien
etiketak aurresateko erabiltzerakoan lortutako emaitzak hobetzen dira. Ondoko bideoan ikus
daitekeen moduan, hasieran oso irregularra den muga leuntzen badoa ere A-ren balioa igo
ahala, puntu batetik aurrera eredua sinplifikatzen doa emaitza txarrak emanez. Beraz, kontu
handia eduki behar da A parametroaren balioa aukeratzerakoan.

10
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1.2.4. Klase anitzen Kklasifikazioa

Bi etiketa desberdin dituzten datuekin lan egin badugu ere, baliteke 3 edo etiketa gehiago
dituzten elementuekin lan egitea nahi izatea. Kasu hauetan klase anitzen klasifikazio baten
aurrean egongo ginateke.

Klase anitzen klasifikazio problema ebazteko aukeretatik intuitiboena One vs All deiturikoa
litzateke. Demagun k etiketa desberdin daudela, hau da, y € {ey, ..., ex}. Orduan, erregresio
logistiko bitarra aplikatzen da e; etiketa 1 kasua moduan hartuz eta beste guztiak batera 0
kasua moduan, i € {1, ..., k} bakoitzeko, k eredu desberdin lortuz. Azkenik, datu berriei eredu
desberdin bakoitzean lortutako probabilitateen artean maximoa duen klasea izango zen
elementuari egokitutako klasea, hau da, e; non hel. = MaXieq,. 13 (g, (X)) den.

One vs All metodoaz aparte, beste hainbat teknika desberdin existitzen dira. Adibidez,
multimodal logistic regresion eta ordinal logistic regresion. Lehenak, One vs All teknikaren
antzeko kontzeptuak lantzen ditu, baina etiketa guztiak bakarka aztertu beharren etiketa bat
pibote moduan erabiltzen du eta besteak honekiko aztertzen ditu. Bigarrena aldiz
ordenatutako kategorien azterketarako erabiltzen da.

1.3. K-nearest-neighbours

Klasifikazio tekniken artean k nearest neighbors edo KNN deituriko teknika intuitiboenetarikoa
dela esan daiteke. Teknika hau klasifikaziorako balio duenez, gure datuak n elementu izango
dira bakoitza bere etiketarekin.

Teknika honen ideia antzera etiketatutako elementuak batera egotera joko dutela da. Hori
kontuan hartuz, elementu berri bat aztertzerakoan elementu horretatik hurbilen dauden
elementuak aztertzen dira. Hau egin ostean, gehien agertzen den etiketa elementu berriaren
etiketa izango da.

Adibide moduan, demagun eskumako argazkiko
egoeran gaudela. Hemen, bi modutan
etiketatutako elementuak ditugu (gurutze berdea
eta gurutze gorria) eta datu berri bat lortzean
(borobil horia) honi dagokion etiketa asmatu

behar dugu. Orduan, k=3 “auzokide”
hurbilenak aztertuz gero, elementu berria ) xx

gurutze gorri moduan etiketatu behar dela =
lortuko genuke. Aldiz, k = 5 kasuaren azterketa ! ! b '
egiten bada, gurutze berde berri batean aurkituko ginateke.

1.3.1. Algoritmoa

Etiketa ezezaguneko elementu berri bat aztertzerako orduan, elementu horren eta etiketa
ezaguneko elementuen arteko distantzia, normalean, ohikoa den distantzia euklidearraren
bitartez kalkulatzen da. Horretarako, aztertutako elementuak aldagai kuantitatiboak izan behar
dira. Hala ere,datuak adierazgarriak diren aldagai kualitatiboak izanez gero, beste distantzia
funtzio bat defini daiteke. Adibide moduan, seinaleak aztertzerakoan elementuen arteko
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korrelazioa kontuan hartzen da eta karaktere kateak aztertzerakoan, hitz batetik bestera
heltzeko zenbat elementu gehitu, aldatu edo ezabatu behar diren zenbatzen da.

Distantziez hitz egiten denez, aldagai guztiak teknikan eragin berdina izateko, egokiena
aldagaiak normalizatzea izango dela.

Metodo honen aurrean jartzerako orduan hartu beharreko erabaki bakarra, aztertuko diren
“auzokide” kopurua da. Parametro honen balioa erabakitzerakoan ondokoa kontuan hartu
behar da: Gero eta baxuagoa izan orduan eta emaitza hobeak lortuko ditu baina gero eta
altuagoa izan orduan eta emaitza leunagoa lortuko ditu. Beraz, gomendagarria da ditugun
datuak bi multzotan, entrenamendu eta test multzotan, banantzea. Kasu honetan, test
multzoko elementuak entrenamendu multzoko elementuekin konparatuko dira k-ren balio
desberdinetarako eta gero, lortutako etiketa duten etiketarekin bat datorren ikusiko da. Hau
egin ostean, errore txikiena duen k balioa hautatuko da.

the data NN classifier 5-NN classifier
1) . a ) » - . ¥ . =
et e ., I . A A - @
. L A = & AP | B
. - & a ® « ¥ . . * e & °
¢ - 4 e L - e s
:n f iwaa.'. = ® .. .' |-.-“ % ® . -o .' ‘-‘J‘ » &
e =.o L L . . e . M
. ::e ,:\"c H '.:..:sl H 03:='$0 °
oy 3 o " 5 ey B

1.3.2. Adibideak

KNN oso teknika sinple eta intuitiboa bada ere, klasifikazio problema askotan emaitza onak
ematen ditu. Adibidez, eskuz idatzitako digituak aurresateko erabiltzen da edota satelitez
lortutako irudien eszenarioa aurresateko ere.

1.3.3. Pros vs cons

Alde batetik teknika honek hainbat aspektu positibo ditu:

e Oso sinple eta eraginkorra da.
e Ez duentrenamendurik behar. Adibide berriak oso erraz gehitzen dira.
¢ Interpretazio oso sinplea dauka.

Bestalde, bere puntu negatiboak ere ditu:

¢ Konputazionalki garestia da. Datu basearen elementu eta aldagaiak handitu ahala
orduan eta geldoago joango da.
e Eskalarekin kontu handia izan behar da.

1.4. Perceptron

Perceptron algoritmoa klasifikaziorako tekniken artean sinpleenetakoa da. Hemen, aztertuko
diren datuak aldagai kuantitatiboak izango dira, bakoitzak duen etiketa izan ezik kualitatiboa
izango dena.
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Algoritmo hau aplikatu ahal izateko, etiketa desberdindun puntuen multzoak linealki
banangarriak izan behar dira. Beste modu batean esanda, elementuek bi etiketa posible
badituzte ( demagun 1 eta -1 etiketak), -1 etiketadun eta 1 etiketadun elementuak banatzen
dituen zuzen edo plano bat existitu behar da.

1.4.1. Algoritmoa

Teknika honek 6 parametroa (p X 1 dimentsiodun bektorea) aurkitzen saiatzen da non
aztertzen den x; elementu bakoitzeko, honen etiketa y; = sign(x;0) izango den.
Horretarako, ondoko balio funtzioa minimizatzen saiatzen da:

L=- Z yi(0 xp),

IEM

non M multzoa txarto klasifikatutako, y; # sign(6 x;), elementuen indizeez osatutako

multzoa den.

Hau lortzeko, stochastic gradient descent deituriko algoritmoa erabiltzen da. Hemen, elementu
guztiek gradientean duten eraginaren batura honen norabide negatiboan eragin beharrean,
elementuak banaka aztertzen dira.

Algoritmoak ondoko pausuak jarraitzen ditu:

6! = 0 hasieratu.
Txarto klasifikatutako (x;, y;) elementuak aurkitu (y; # sign(6 x;) betetzen dutenak).
3. Aurreko pausuan elementuren bat aurkitzen bada 6 parametroa ondoko eran
eguneratu: %! = 0t + py;x;.
a. Bueltatu 2. puntura.
4. Bigarren puntuan ez bada elementurik aurkitzen, algoritmoa bukatu.

1.4.2. Kontuan hartu beharreko gauzak

e Data banangarria denean erantzun posible asko daude eta hasieratze balioen
araberako erantzuna emango da.

¢ Pausu kopuru finitu baten emaitza lor badaiteke ere, pausu kopuru altua izan daiteke.

e Data banangarria ez bada metodoa ez du inoiz konbergituko eta lortutako emaitzak
patroi zikliko bat jarraituko dute.

1.5. Support Vector Machine (SVM)

Klasifikaziorako erabiltzen diren algoritmoen artean SVM-a algoritmo indartsu eta nahiko
zabaldua da. Algoritmo hau klasifikaziorako erabiltzen den algoritmoa da, hau da,
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etiketatutako datu multzo batetik abiatuz, datuen eta etiketen arteko erlazioa ikasten saiatzen
da. Horrela, etiketarik gabeko datu berriak lortzerakoan, datu horiek zein multzokoak diren
aurresan ahal izateko.

Demagun linealki banangarria den etiketatutako datu multzoa dugula. Algoritmo honek
desberdin etiketatutako datu multzoak (demagun bi etiketa daudela) hiperplano batekin
banatzen saiatzen da. Horrela, hiperplanoaren alde batean dauden datu guztiak etiketa bat
izango dute eta beste aldekoak bestea.

Beste algoritmo batzuek, adib. “Percetron” algoritmoa, desberdin etiketatutako multzoak
banatzen dituen muga aurkitzearekin nahikoa badute ere SVM algoritmoa “Large margin
P Classifier” moduan ezagutzen da. Klasifikazio

metodo honek, multzo desberdinak banatzeaz
aparte multzoen eta mugen arteko distantzia

+ T @
T e maximizatzen du.
: <
o SVM algoritmoa aplikatzerakoan, sarrera moduan
* swpot gldagai kuantitatiboak izango ditugu eta, sarrera
. N \ datu bakoitzeko, hauek etiketatzen dituen aldagai
n kualitatibo bat izango dugu.
1.5.1. Linealak ez diren mugak
8 Azaldutako SVM metodoa duen arazo nagusia datuak
it * linealki banangarriak izan behar direla da. Beraz,
& ” -I-+ ¥ e & aurkitu daitezkeen kasurik gehienetan arazoak izango
s + + & 41’1;}‘%, * s * genituzke, eskumako argazkian ikus daitekeen
L TR *t o, moduan.
++ PP o .
+ ¥ . o4 atat Kasu hauek gainditzeko daukagun datuei Kernel
*"' & . s 4 * + deituriko funtzioak aplikatzen zaizkie. Horrela, linealki
: e @ 0 d banandu ezin diren puntuetatik abiatuz linealki
> banangarriak diren puntuak lortzen dira, ondoko

bideoan ikus daitekeen moduan.

Erabiltzen den kerneletatik ezagunena edo erabiliena Kernel Gaussiarra da, RBF Kernel

> 2
X+t
ey

5 T
moduan ere ezagutzen dena: K(x, l‘) =e

1.5.1.1. Algoritmoa

Kernel hau aplikatzeko, egin beharreko lehenengo gauza zentro bat, l_‘), eta bariantzarentzako
balio bat, o, aukeratzea da. Hau eginda, funtzio honek zentrotik hurbil dauden puntuen eta
urrun dauden puntuen arteko aldea nabarmenduko du, urrun dauden puntuei zero balioa

egokituz. Aurreko adibidearekin jarraituz, eta letaco egokiak aukeratuz, ondoren azaltzen
den moduko emaitza lortuko genuke:
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Demagun algoritmoa entrenatzeko daukagun multzoan n elementu daudela (xj, ...

 Xn)-

Orduan, 1! balioak aukeratzeko posibilitate bat, elementu bakoitza dagoen toki berdinean [

puntu bat jartzea litzateke, hau da, [1 = X7, I = X,

kernel edukiko genituzke.

Orduan, algoritmoa entrenatzeko ondoko balio funtzioa defini daiteke:

Kasu honetan n zentro eta, beraz, n

n n
) ) . . 1
c Z[y‘costl(BTf(‘)) + (1= y¥)costo(8TF®) + EZ 6
i=1 j=1

non

costi(z) = —log (1 _Z) eta costy, = —log<1 —

eta

fod =
19 = k@, 1)

1+e%

O = : diren eta 0 ikasi nahi diren parametroez osatutako bektorea den.

9 =K, l‘"’)/

1.5.1.2. C eta o balioak

RBF Kernel-a aplikatzerako orduan, kontu handia eduki
behar da o balioa aukeratzerakoan. Balio txikiegia
hartuz gero algoritmoa o0so zorrotza izango da, kasu
positibo batzuk kanpoan utziz ( zirkulu urdin argia).
Bestalde, balio altua hartuz gero kasu positibo moduan
puntu behar baino gehiago klasifika ditzake (zirkulu
urdin iluna).

C balioa, aldiz, erregulazio parametro bat da. Balio oso
altua erabiliz gero, algoritmoa datu baseko adibideak
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ikasiko lituzke hauen arteko erlazioak ikasi beharrean eta etorkizuneko adibideetan huts
eginez. Bestalde, balio baxua erabiliz gero, algoritmoak iragarpenak egiten ondo ez ikastea
gerta daiteke, ez entrenamenduan ezta etorkizuneko kasuetan ere.

1.5.1.3. Beste Kernel batzuk

RBF Kernela erabilienetakoa bada ere, beste Kernel mota batzuk erabili ahal dira, adibidez:

Kernel lineala (kernel gabe): y=1 baldin eta soilik baldin 67X > 0 bada.
Polinomikoa: K(x,l) = (ax"T L+ c) ™ non a,c konstanteak diren eta m zenbaki
arrunta den.

3. Llaplaziarra: K(x,1) = exp(—a]|lx — []|) non a > 0 den.

1.5.2. Noiz erabili SVM (ERREGRESIO LOGISTIKOA VS SVM)

Demagun dugun datu kopurua n dela eta datu bakoitzak p aldagai kuantitatibo dituela,
orduan:

e Aldagai asko baditugu, hau da, p >>> n bada gomendagarria da erregresio logistikoa
erabiltzea edota SVM kernelik gabe erabiltzea.

* p nahiko txikia bada (1-1000) eta datu asko baditugu, hau da, n (10-10000) (1:10)
tartean badago SVM- Kernel Gaussiar batekin erabiltzea gomendagarria da.

* n oso handia bada (>50000) eta p nahiko txikia (1-1000 tartean) orduan SVM oso
astiro joango litzateke. Beraz, aldagai gehiago gehitu edo sortzeaz aparte erregresio
logistikoa erabiltzea edo SVM kernel-ik gabe erabiltzea gomendatzen da.

1.6. Decision trees

Zuhaitzetan oinarritutako metodoek aztertzen den datuen espazioa banatzen dituzte eta zati
bakoitzari etiketa edo balio bat esleitzen dio. Metodo hauek bai erregresiorako baita
klasifikaziorako erabili ahal diren arren hemen klasifikaziorako kasua aztertuko da.

Eremu desberdinak definitzerako orduan, mugen interpretazioa errazteko, modu errekurtsibo
eta bitar batean definituko dira.

Adibide moduan, demagun aztertzen den datu
baseko elementuek bi aldagai kuantitatibo, X eta Y,
eta bi balioa hartzen dituen etiketa bat, Z, dituztela.
Demagun ere datuak X eta Y aldagaiekiko
irudikatzen direla eta puntu bakoitzari etiketaren
arabera kolore bat ematen zaiola, eskuman ikus
daitekeen grafikoa lortuz.

Irudian ikus daitekeen moduan, etiketa berdedun puntuak bi eremu isolatuetan daude, etiketa
gorridunak beste espazio guztia betez. Algoritmoa datu multzoa bitan bananduko du X edo Y
aldagaiarekiko zati bakoitzean mota bakarreko etiketa isolatzen saiatuz. Lortutako
azpimultzoetan prozesu bera jarraituko du, eremu bakoitzean etiketa bakarra egon arte edo
lortutako errorea aurretik finkatutako balio bat baino baxuagoa izan arte. Azaldutako
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adibidean, ezkerreko grafikoan ikus daitekeen
emaitza lortuko zen, ikus daitekeenez, etiketa

gorri eta berdedunen arteko mugak oso ondo
finkatzen dira.

Etiketa gabeko datu berri bat lortzerakoan,

nahikoa litzateke bere Xeta Y aldagaien balioak
aztertzea zein eremukoa den jakiteko. Horrela,
duen etiketa aurresango zen. Lehenago lortutako emaitza, zuhaitz deituriko grafo batean
laburbildu daiteke, era intuitiboago baten lan egin ahal izateko. Ondoren, aztertzen hari garen
adibidearen zuhaitza ikus daiteke:

X>09
bai €z
Y > 06 Y > 15
bai ez bai ez
|
Berdea Gorria X>06 Gorria
bai ez
|

Berdea Gorria

1.6.1. Algoritmoa

Demagun aztertu beharreko datu multzoa n aldagai dituela, hau da, X, ..., X,,. Algoritmoa
iterazio bakoitzean bi gauza erabaki beharko ditu: datuak banatzeko erabiliko den j aldagaia
eta s ebaketa puntua. Hau lortzeko ez dago erregela finkorik, algoritmoak aldagai desberdinen
puntu desberdinak frogatzen ditu eta errore minimizatzen duen t; ebaketa puntua hautatzen
du. Errorea kalkulatzeko balio desberdinak erabiltzen dira, ondoren hiru neurri definituko dira:
Klasifikazio errorea, Gini indizea eta Entropia. Demagun p; balioa aztertzen ari garen eremuan
i-garren etiketadun elementuen proportzioa adierazten duela, orduan:

1. Klasifikazio errorea: 1 — max;<;<x Di-
2. Giniindizea: 1 — ¥¥ , p2.
3. Entropia: — Y ¥, p;In(p;).
Hauen artean erabilienak Gini indizea eta Entropia dira. Ikus daitekeen moduan, balio guzti

hauek 0 izango dira baldin eta soilik baldin aztertzen den eremua etiketa mota bakarra duen
eremua bada.
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Behin zatiketa puntua aurkituta, datu multzoa bi azpimultzotan banatzen da eta azpimultzo
hauetan prozesu bera jarraitzen da. Hala ere, kontua handia izan behar da egiten den ebaketa
kopuruarekin. Oso zuhaitz handiek aztertzen den datu base espezifikoa ikasiko (overfiting)
lukete eta oso zuhaitz txikiak, aldiz, emaitza txarrak emango lituzke. Hau saihesteko, Pruning
deituriko teknika jarraitzen da. Hemen, lehenik eta behin zuhaitza hazten da, aurretik
finkatutako tamaina bat lortu arte. Ondoren, honen tamaina murrizten joaten da tamaina
optimo bat eduki arte. Hasierako zuhaitzaren zein azpi-zuhaitzarekin geratuko garen
erabakitzeko, zuhaitzaren erroreari zuhaitzaren tamainaren menpeko pisu bat gehituko zaio
eta balio minimoa duen emaitza hautatuko da.

1.6.2. Abantailak vs desabantailak
Metodo honek hainbat abantaila ditu, adibidez:

¢ Interpretatzeko erraza da.

¢ Aldagai kuantitatibo zein kualitatiboekin la egiteko aukera ematen du.
e Ez du datuen prozesamendurik behar.

* Datu base handiekin emaitza onak ematen ditu.

Bestalde, baditu bere desabantailak ere:

e Ezegonkorrak izan daitezke, datuen aldaketa txiki bat lortutako emaitzan aldaketa
handia eragin dezake.

e Algoritmoa ez da NP-Complete, hau da, problemaren soluzioa bat denbora
polinomiokoan lortu daiteke baina globalki optimoa den problemaren emaitza lortzea
ez da hain erraza.

1.7. Essembled methods

Teorian ikusitako metodo guztiak aplikatzerako orduan, modu eta parametro desberdinekin
saiatu arren, batzuetan lortutako emaitzak nahi bezain egokiak ez izatea gerta daiteke. Hau
gertatzerakoan, interesgarria litzateke emaitza ez oso onak lortzen dituen tekniketatik abiatuz
eredu onak lortzea.

Bereziki hori da ondoren ikusiko diren metodo desberdinen helburua. Teknikak aztertzen hasi
baino lehen, eredu desberdinen konbinazioak eredu solteak lorturiko emaitzak hobetzeko,
hauen errorea %50 baino txikiagoa izan behar du. Beste modu batean esanda, ausaz lortutako
ereduak baino emaitza hobeak eman behar dituzte.

1.7.1. Boostrap

Entrenamendu datu multzo berdinari metodo berdina aplikatzerakoan, logikoa den moduan,
emaitza berdinak lortuko genituzke. Beraz, emaitzak hobetzeko eredu desberdinak garatu eta
konbinatu nahi baditugu entrenamendu datu multzo desberdinak erabili beharko genituzke.
Horretarako, “Boostrap” deituriko teknika erabili daiteke.

Teknika honek hasierako datuetatik {xy,..,x,}, n ausazko aukeraketa egiten ditu,
errepikapenekin. Hau da, b multzo entrenatu nahi izanez gero, ausaz b aldiz hasierako
multzotik n elementu errepikapenekin aukeratzen dira, By, ... By, lagin desberdinak lortuz.
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Behin entrenamenduko datu multzotik konbinatuko diren lagin desberdinak lortuz, hauek
konbinatzeko teknika desberdinak ikusiko ditugu.

1.7.2. Bagging (Boostrap aggregation)

Metodo hau ikusiko direnen artean sinpleenetarikoa dela esan daiteke. Kasu honetan
lortutako entrenamendu multzo bakoitzetik eredu bat lortzen da, f},, eta gero datu berri bat,
Xo , lortzerakoan honi loturiko etiketa edo balioa ondoko eran kalkulatuko litzateke:

e Eredua erregresio eredua bada, emaitza eredu desberdinen emaitzen media izango
. 1 .
litzateke, hau da, f(x,) = > b, fi(xo) kalkulatuko litzateke.

e Eredua klasifikaziorako bada, lortutako b ereduak aplikatu ostean kasu gehienetan

lorturiko etiketa egokituko zaio.

Training Sample

L Boostrap Sample ( 1 Boostrap Sample

e
@) [ ]

[ @ ]
o~ 1 yd

Final Model

1.7.3. Random forest

Erabaki zuhaitzak garatzerako orduan Bagging teknikak espero baino emaitza txarragoak
ematen ditu. Honen arrazoirik nagusiena Bagging teknikarekin lortutako zuhaitz desberdinen
artean oso korrelazio altua dagoela da. Hori dela eta, lortutako emaitzak bateratu arren
antzeko emaitzak lortuko genituzke.

Arazo hauek gainditzeko Ramdom forest teknika garatu zen. Nahiko sinplea den eta Bagging
teknikarekin antzeko ezaugarriak mantentzen dituen teknika bada ere, emaitza hobeagoak
lortzen dituela ikus daiteke. Bagging eta Random forest algoritmoen arteko desberdintasuna,
Boostrap teknika aplikatu ostean lortutako lagineko datuetatik m < p ausazko aldagai
aukeratzen dituela da, lagin bakoitzeko m aldagaien aukeraketa desberdina izanda.

Normalean, m~,/p erabiltzen da baina edozein balio aukeratu daiteke.
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1.7.4. Boosting

Bukatzeko, boosting teknikan ere eredu ahul desberdinak emaitza hobeagoak lortzeko
konbinatzen diren arren, aurreko teknikekiko desberdintasun nabari bat dauka. Kasu honetan,
ez dira entrenamendurako multzo desberdinak boostrap-en bidez sortu behar. Hemen, dugun
entrenamendurako datu multzotik abiatuz eta elementu bakoitzari “pisu” (a;) bat emanez
entrenatuko den multzo berria aukeratzen da. Eredu guztiak kalkulatu ostean, hauek
entrenatzeko erabili diren pisuek bakoitzak duen eragina adieraziko dute. Beraz, eredu finala
ondoko moduan kalkulatuko litzateke:

b
f(xo) = sign()” aifiCxo))
i=1

1.7.4.1. Adaboost algoritmoa

Boosting-a erabiltzen duen algoritmo ezagunenetako bat AdaBoost algoritmo da. Demagun n
elementu ditugula gure entrenamendu multzoan eta elementu bakoitzeko etiketa bat dugula
(1 edo -1), hau da, (X1,y1), -.., (X5, ¥) tuplak ditugula X; elementu bat izanda eta y; honen
etiketa. Hasiera batean lehengo ereduan parte hartzeko elementu bakoitzaren probabilitatea
Po,i = % izango da. Orduan Adaboost algoritmoak ondoko pausuak jarraitzen ditut =1, ...,T

iterazio bakoitzeko:

1. Boostrap teknikarekin X; elementu bakoitzak p,; aukeratzeko probabilitatea edukita,
n tamainako B; multzoa aukeratzen da.
ft klasifikazio eredua ikasten da B; multzoarekin.
Lortutako ereduaren erroreak eta pisuak ondoko eran kalkulatzen dira :

a. e = Yis pei Wy # fr (XD}
b. a, = In(=2).
4. Probabilitate berriak bi pausutan kalkulatzen dira:
a. Elementu bakoitzaren eragina kalkulatzen da txarto klasifikatuei

et

garrantzi handiagoa emanez:
. A — _a . X
i Preri = Ppi e @YVS0D
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b. Elementu guztien eragina kontuan hartuz, bakoitzak hurrengo pausuan

kontuan hartzeko duen probabilitatea kalkulatzen da.

DPe+1

i ;==
pt+1,l ijt+1,j

Bukatzeko elementu berri bakoitzaren etiketa aurresateko lortutako eredu

desberdinak konbinatzen dira. Hau egiterakoan eredu bakoitzaren eragina aurretik

kalkulatutako pisuak izango dira:

fBoost(xnew) = sign (X ¢ fi(Xnew))-

e N
Training Sample

N I J

p
Weighted Sample

) I

-

\.

Weighted Error E__

Weighted Sample é

v
Final Model

Ondoko estekan algoritmoaren eboluzioa ikus daiteke 300 iterazioetan zehar.
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2. Unsupervised learning

Unsupervised learning motatako tekniketan datuek ez dute inongo etiketa edo baliorik
esleituta izango. Hemen, ditugun datuei buruz “ezkutatutako” informazio lortzea izango da
helburu nagusia. Teknika hauei esker antzeko ezaugarriak dituzten elementuak batu, bi
pertsonen gustuak jakinda errekomendazioak egin (Netflix edo Amazon egiten duten moduan),
informazio minimoa galduz datuen dimentsioa laburtu edota elementuen arteko
menpekotasuna aztertu moduko gauzak egin daitezke.

Unsupervised learning metodoen artean ondokoak aztertuko dira:

Kluster

PCA

Asociation rules

Content based filtering eta collaborative filtering
Markov Models

vk wnN e

2.1. Kluster

Kluster teknika aztertzen den datu multzoan dauden egiturak aurkitzen eta datuak multzo
desberdinetan batzen saiatzen den “unsupervised” metodo barruan dagoen teknika bat da.

Esan bezala, ditugun datuen elementuak
multzokatzea  (“kluster”  desberdinetan
sartzea) da metodo honen helburua.

Horretarako, bereziki bi ideia kontuan hartu
beharko dira. Alde batetik, multzo berdineko
elementuak oso antzekoak izan behar dira.
Bestetik, multzo desberdineko elementuak

beraien artean ahalik eta desberdinenak izan
behar dira.

\j
\j

2.1.1. K-means algoritmoa

Klusterrak kalkulatzerako garaian teknikarik ezagunenetariko bat k-means algoritmoa da.
Algoritmo hau aplikatzerako garaian, datuak zenbat k multzotan banandu nahi diren finkatu
beharko da. Hau eginda, datuen multzoko elementuen artean k aukeratzen dira, (iy, ..., 4x),
klusterren zentroideak izango direnak. Ondoren, algoritmoak ondoko pausuak errepikatzen
ditu:

1. x; elementu bakoitzari hurbilen duen c; klusterra egokitzen zaio. Horretarako,
arg ming ||, — x;||, kalkulatzen da.
2. mny balioa k klusterrean dauden elementuen kopurua adierazten badu, zentroideak

. . . 1 on
berritu egiten dira ondoko eran: u;, = n_2i=kl x; non x; elementuak k klusterrean
k

dauden.

Prozesu berdina behin eta berriz errepikatzen da konbergitu arte edota aurretik finkatutako
iterazio kopurua igaro arte. Ondoko bideoan algoritmoaren adibide intuitibo bat ikus daiteke.
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2.1.2. Klusterren aukeraketa

K-means teknikaren berezitasun bat ditugun datuak zenbat kluster desberdinetan bananduko
diren hasieratik erabaki behar dela da. Hala ere, gomendagarria da algoritmoa k-ren balio
desberdinetarako aplikatzea eta lortutako emaitzak konparatzea. Emaitzak konparatu ahal
izateko kostu funtzio bat definitu behar da. Adibide bezala, gure X datu baseak n elementu
baditu, ondokoa kostu funtzio posible bat litzateke:

_1lyk
FC b et = 2T, 50 [l — )
non x;; elementua j klusterraren i elementua den.

Ohartu gero eta kluster gehiago definitu orduan eta kostu txikiagoa izango duela, n
elementurako n kluster definitzerakoan zero kostua lortuz. Aldagai honen balioa helburuaren
arabera aukeratzen da. Adibidez, aztertzen den datu basea enpresa baten bezeroak badira eta
bezeroak k langileen artean banandu behar badira, langile bakoitzari egokitutako bezeroak
ahal eta antzekoenak izanda, k kluster egitea interesgarria litzateke.

2.1.3. Ohiko arazoa

k-means algoritmoa aplikatzerakoan, hasieran egiten den ausazko zentroideen aukeraketaren
arabera algoritmoa emaitza optimo lokal batean gera daiteke. Kasu honetan, emaitza honek
koste baxua izan arren koste baxuagoko emaitza bat existituko litzateke. Egoera hau
saihesteko gomendagarria litzateke algoritmoa hasieratze desberdinekin aplikatzea eta kostu
minimoa duen emaitzarekin geratzea. Ondoko bideoan algoritmoa hasieratze desberdineko
emandako emaitzak ikus daitezke.

2.1.4. K-medoids

K-means funtzioaren kasuan bi elementuen arteko distantzia edo antzekotasuna norma
euklidearraren bitartez neurtzen da. Beraz, algoritmo hori aplikatzeko nahi eta nahi ez datuak
kuantitatiboak izan behar dira. Gainera, distantzia euklidearra erabiltzen den heinean,
distantzia altuko elementuak eragin handia izango dute metodoan. Arazo hauek gainditzeko,
k-medoids metodoa definitzen da. Algoritmo honen eta k-means algoritmoaren arteko
desberdintasun bakarra algoritmoaren lehenengo atalean dago. Hemen, elementuak kluster
desberdinei egokitzeko garaian hauen eta kluster desberdinen arteko konparaketa beste
desberdintasun D funtzio bat erabiltzen da. Beraz, algoritmoaren lehenengo pausua ondokoa
litzateke:

1. x; elementu bakoitzari hurbilen duen c¢; klusterra egokitzen zaio. Horretarako,
arg miny, D (u, x;) kalkulatzen da.

Kmedoids metodoaren kasuan, kmeans metodoan ez bezala, Klusterren zentro moduan datu
baseko elementuak aukeratzen dira.

2.1.5. Mixture models

Kluster bat egiterakoan bi motatako teknika daudela esan daiteke: hard clustering eta soft
clustering. Lehenengoaren kasuan, elementu bakoitzari kluster bat egokitzen zaio eta
bigarrenean, aldiz, elementu bakoitzari kluster bakoitzean egoteko probabilitatea egokitzen
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zaio. Lehen ikusitako k-means algoritmoa lehenengo teknika multzoari dagokio. Ondorengo
irudian datu base bati k-means (3 kluster) algoritmoa lortutako klusterrak (a), aztertzen den
datua basea (b) eta soft clustering familiako teknika batek (c) emandako emaitzak ikus
daitezke.

Bigarren metodo probabilistiko hauetan Mixture models deituriko teknikak erabiltzen dira.
Hemen Gaussian Mixture Models (GMM) deituriko teknika aztertuko ditugu. Teknika honek, k-
means algoritmoa moduan, aztertzen diren datuak k klusterretan banatzen saiatzen da.
Horretarako, sarrerako datuen artean parametro desberdineko k banaketa normal daudela
suposatzen da. Ereduak elementu bakoitza banaketa bati egokituko dio. Banaketa normalen
bariantza zerorantz joan ahala, lortutako emaitza k-means algoritmoak ematen dituen emaitza
berdinak lortuko dira.

Gaussian Mixture Model

Eredu hauen abantailarik nagusiena hard clustering teknikak baino emaitza zehatzagoak
ematen dituztela da. Hala ere, datuen banaketa aurretik finkatzen denez, kluster desberdinak
itxura finko batekoak izango dira, Gaussian Mixture Models kasuan, elipsoideak. K-means
algoritmoa aldiz, oso algoritmo azkarra da, datu kopurua handiarekin lan egin ahal duena.
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2.2.PCA

Big data-ri buruz hitz egiterakoan datu kantitate erraldoi bati buruz hitz egiten ari gara. Hori

dela eta, analisi desberdinak egiteko, erabiliko diren teknikak datu kopuru altu batekin

borrokatu beharko dira. Aldagai askorekin lan egingo dugula kontuan hartuz, interesgarria

litzateke aldagaien informazio guztia edo ia guztia aldagai kopuru txikiago batekin ordezkatzea.

PCA teknikaren helburua hori litzateke, aztertzen den datu basearen aldagaiak kontuan hartuz,

hauen informazioa dimentsio txikiago batera bidaltzea.

Demagun gure datu baseak n elementu dituela, bakoitza d aldagaiekin. Orduan, gure datuak d

dimentsioko espazio batean “bizi” direla esan daiteke. PCA-ren lana dimentsio horretako zein

norabideetan datuen bariantzarik altuena dagoen ikustea da, hau da, zein norabideetan

dagoen elementuen aldaketa handiena. Norabide horiek jakinda, PCA teknikak dimentsio

baxuagoko espazio batean gure datuen hurbilpenik onena lortzen du.

Largest Principal
Componant

/B Smallest Principal
J Componant

2.2.1. d=2 adibidea

Kontzeptua hobeto ulertzeko, ondorengo
irudian d = 2 den adibide bat ikusiko dugu.
Adibidean gure datuen puntu grafikoa
ikusteaz aparte, geroago definituko ditugun
datuen elementu nagusiak (principal
component) ikusten dira. Hauek
informazioaren aldaketa handiena zein
norabideetan gertatzen den adierazten
dute.

Kasu zehatz honetan gure datuak bi
dimentsiodun espazio batean daudenez,
hauek espazio txikiago batean aztertu nahi
izanez gero bat dimentsioko espazio batera
eramatea aukera bakarra da. Horretarako,
datu guztiak gure elementu nagusietako
handienera proiektatuko ditugu, datu
guztiak bat dimentsioko zuzenean utziz.
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2.2.2.d=3 adibidea

Ondoren, adibide modura, d = 3 den adibide bat ikusten da non datuak hiru dimentsioko
espaziotik abiatuz bi dimentsioko espazio batera proiektatzen diren.

0.0
H

-/7/ f W

Second principal component

-0.5

-1.0

T T T
-1.0 -0.5 0.0 0.5 1.0
First principal component

2.2.3 Alde teorikoa

Ditugun datuak dimentsio baxuago batera proiektatzen ditugunean informazio galera bat
egongo dela dakigu. Beraz, logikoa den moduan, proiekzioa egiterakoan dagoen informazio
galera txikiena bermatzen duten norabideak aukeratuko dira. Hasieran komentatu bezala,
aldagai desberdinen arteko bariantza aztertuko da hauen arteko erlazioa ikusteko. Hau guztia
kontuan hartuz, froga daiteke kobariantza matrizearen balio singularren deskonposizioan

(SVD) lortutako norabidea bilatzen ari garen norabideak direla. Beraz, Z = %XXT datuen

kobariantza matrizea bada, Z = US?UT honen SVD-a litzateke non U matrize ortonormala
p X p dimentsiokoa den eta S? matrize diagonala den, Z-ren 1; > 1, > -+ > 1, > 0 balio
propioez osatua dagoen eta d < m den.

Orduan, transformaziorako behar diren bektoreak U matrizearen lehenengo g < p zutabeak
izango dira. Bektore hauek U, proiekzio matrizea osatuko lukete. Ohartu, g = p kasuan

dimentsioa ez dela murriztuko, koordenatu aldaketa bat soilik izango bailitzateke.

Bukatzeko, gure datuak {xy, ..., x,} badira, PCA aplikatu ostean lortutako datuak {X;};c(1,. n)
lirateke non X; = Uy x; diren.

2.2.4 Dimentsioen aukeraketa

Behin datu multzoaren proiekzio matrizea kalkulatuta erabiliko diren dimentsioak aukeratu
behar dira. Horretarako, dimentsio bakoitzak ordezkatzen duen hasierako datuen bariantzaren
ehunekoa zein den aztertzen da eta egokia den kopurua aukeratzen da. Hau egiteko ez dago
lege edo erregela finkorik eta bakoitzaren beharren araberako aukeraketa egiten da. Demagun
A4, ..., Aglortutako balio propioak direla, orduan lehenengo k < d aldagai nagusiak ordezten
duen bariantza ondokoa litzateke:
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2.2.5 Kernel PCA

Beste teknika batzuekin gertatzen den moduan hemen ere datuen linealtasuna
aurresuposatzen da baina hori ez da beti zertan gertatu behar. Kasu hauetan, teknika
aplikatzen hasi baino lehen datuak dimentsio altuago batera eramatea beharrezkoa litzateke,
datuen linealtasuna bermatzeko. Horretarako, kernel desberdinak erabili daitezke, kernel
gaussiarra esaterako.

Ondoren, etiketatutako datu multzo bati PCA kernel gaussiar desberdinak aplikatuz lortutako
emaitzak ikusten dira.

Radial Kernel (c=2) Radial Kernel {c=10)
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Ikusten denez, Kernel Gaussiarra ¢ = 10 balioarekin aplikatu ostean, lortutako emaitza datuen

benetako natura askoz hobeago erakusten du.

2.2.6 Aplikatzerakoan kontuan hartu beharreko puntuak

e Balio galduekin kontu berezia eduki behar da. Metodo honen helburua informazioa
laburtzea da eta horretarako korrelazio edo kobariantza matrizea erabiltzen du. Hori
dela eta, matrize hau ondo definituta egotea beharrezkoa da.

e Aldagaien arteko bariantza neurtzen denez, nahitaezkoa da hauek eskala berdinean
egotea. Horretarako aldagaiak estandarizatzea gomendagarria litzateke metodoarekin
hasi baino lehen.

e Balio propioak hautatzerakoan, gero eta gehiago hautatu, orduan eta bariantza
orokorraren portzentajea altuagoa azalduko da. Hala ere, batzuetan n balio propio
hautatzetik n + 1 hautatzera dagoen aldea oso txikia da. Beraz, balio propioen
kopurua ondo aukeratu behar da, azaldutako bariantza eta aldagai berrien kopuruaren
arteko balantza mantenduz.

¢ Kontuan hartu kalkulatutako U, matrizea entrenamendurako multzoarekin kalkulatzen
dela. Matrize hori bai entrenamendurako balidaziorako eta baita test-erako erabiliko
da.

2.3 Association rules

Asoziazio analisia datu multzo baten barruan batera azaltzen diren gertakizunak aurkitzen
saiatzen da. Teknika honek, bereziki, aldagai bitarrak dituen datu base komertzialak aztertzen
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ditu eta “market basket” analisi moduan ezagutzen ohi da. Testuinguru honetan, aldagai
bakoitza produktu desberdin bati egokituko litzateke, adibidez, {X;, ..., X;} elementu badaude,
i elementu bakoitzeko X; aldagaiak bi balio desberdin hartuko lituzke: x;; = 1 balioa, i
obserbazioan j produktua agertzen dela adieraziko luke eta x;; =0 balioa aldiz, j
produktuaren falta adieraziko luke. Asoziazio legeak aldiz produktu edo elementu baten edo
multzo baten presentziak beste elementu desberdin baten presentzian duen eragina aztertzen
du.

Esan bezala, normalean testuinguru komertzial batean erabiltzen den teknika da. Bereziki,
denden apalen antolamenduan, produktuen promozioen marketing-a prestatzeko, katalogoen
diseinuan eta erosketa patroietan oinarritutako erosleen segmentazioan erabili ohi da.

Adibide moduan, demagun janari denda baten jabeak bere dendatik igaro izan diren
azkenengo bost erosleen erosketen zerrendak dituela:

Eroslea Produktuak

1 {ogia, esnea}

2 {ogia, haur-oihala, garagardoa, arrautzak}
3 {esnea, haur-oihala, kola, garagardoa}

4 {ogia, esnea, haur-oihala, garagardoa}

5 {ogia, esnea, haur-oihala, kola}

Orduan asoziazio legeek bermatuko liokete erosketen patroiak aurkitzea, adibidez, haur-
oihalak erosten dituzten bezeroek garagardoa ere erosteko aukera altua dela. Asoziazio
analisiak aldiz, ogia eta esnea normalean batera erosten direla azalduko luke.

2.3.1 Asoziazio analisia

Algoritmoa azaldu baino lehen, erabiliko diren pare bat kontzeptu ikusiko dira. Izan bedi
K c {1,..,d} azpimultzoa X; = 1,...,X; = 1 elementuen presentzia adierazten duena eta
izan bitez A, Bc K non AN B = @ eta AU B = K diren. Ondoko kontzeptuak kontuan hartu
behar dira:

e P(¥)=P(A, B); X multzoko elementuen frekuentzia. Zein elementuen konbinazioa

askotan agertzen den ikustea interesgarria litzateke,

e P(AB) = %; B elementua dagoela jakinda zein den A elementua egoteko
konfiantza. Normalean A = B lege bat dagoela adierazteko erabiltzen da.

. _ PAB) _ P(BIA) .
L(A,B) = P(A)PB) ~ PMB) '’

dagoela jakinda B elementua egoteko konfiantzan dagoen segurtasuna zein den

A = B erregelaren “Lift” deiturikoa. A elementua

neurtzen du.

2.3.2 Apriori algoritmoa

Algoritmo honen helburua aurredefinitutako t “threshold” bat baino frekuentzia altuagoa
duten X c {1,...,d} azpimultzoak bilatzea da. Helburu hau lortzen laguntzeko ondoko bi
propietateak erabiltzen dira:
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e Aztertutako K azpimultzoaren frekuentzia nahikoa ez bada, K barruan duen edozein
multzoaren frekuentzia ez da nahikoa izango. Matematikoki baliokidea dena,
P(X) <tbadaeta X' =K UAbada A c {1,..,d}izanda, P(X") < t izango da.

e Aztertutako K azpimultzoaren frekuentzia nahiko altua bada eta A c X bada, orduan
A multzoaren frekuentzia nahiko altua izango da. Baliokidea dena, P(X) >t
eta A c X badira, orduan P(4) > t izango da.

Propietate hauen laguntzaz apriori algoritmoaren bertsio sinple bat ondokoa litzateke:

1. 0 <t <1"“threshold” bat finkatu.
Elementu bakarreko, || =1 azpimultzoetatik, t bainoa frekuentzia altuagoa
dituztenak gorde.

3. Aurreko pausuan gordetako elementuak konbinatuz lortzen diren bi elementuetako
|#| = 2 azpimultzoetatik, t bainoa frekuentzia altuagoa dituztenak gorde.

4. Pausua errepikatzen da K multzoaren elementu kopurua, |X| =k, handituz k <p
elementu dituen multzoetatik t bainoa frekuentzia altuagoko bat ere ez egon arte.

Aurreko propietateak kontuan hartuz begi-bistakoa da k handitu ahala baztertzen diren
azpimultzoen kopurua handituko dela. Horri esker, konbinazio guztiak ez dira aztertu beharko.
Gainera, oso probablea da k < p bat existitzea non bertatik aurrera dauden azpimultzo guztiak
baztertzen diren.

2.3.3 Algoritmoa hobetzen

Emandako algoritmoa apriori algoritmoaren inplementazio basikoa besterik ez da eta suposa
daitekeen moduan modu desberdinetan hobe daiteke:

e |X]|=k—1 elementuko multzo baten frekuentzia t baino altuagoa dela aurrez
aldetik jakinez gero, multzo horren elementuez edota hauen konbinazioez osatutako
azpimultzoen frekuentzia t baino altuagoa dela baiezta daiteke. Beraz, azpimultzo
hauek ez dira zertan aztertu behar.

e {a,b}u{c}={c}u{a b} denez, errepikapenak saihesteko indizeak erabiltzea
lagungarria da.

2.3.4 Asoziazio legeak

Behin batera agertzeko joera dituzten elementuak aurkituta, hauen artean kausalitate
erlazioren bat dagoen aztertzen da. Horretarako, bigarren t, “threshold” bat finkatzen da eta
aurreko algoritmotik lortutako K azpimultzoak aztertzen dira. Demagun A U B = K betetzen
dela orduan A = B beteko da baldin eta P(A|B) > t, bada. Gogoratu apriori algoritmoan

P(A) eta P(B) kalkulatzen direla eta P(A|B) =% dela, eta, beraz, ez dela berriz ere

probabilitateen kalkulua egin beharko. Adibidea

2.3.4 Lift-a

Aurreko 2.3.1 atalean definitutako kontzeptuetatik Lift elementua zertarako balio duen
ikustea falta zaigu. Lehen esan bezala, Lift-a multzo baten A elementua dagoela jakinda multzo
horretan B elementua egoteko konfiantzan dagoen segurtasuna zein den neurtzen du.
Elementu honen balioa aztertzerakoan hiru kasu bereizi beharko dira: Lift <1 kasua, Lift =1
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kasua eta Lift > 1 kasua. Aztertzen den kasuaren Lift-a hartzen duen balioa 1 baino baxuagoa
bada aztertutako elementuetako baten agerpenak bigarrenaren agerpenean eragin negatiboa
duela esan nahiko du. Bestalde, Lift-a 1 balioa hartzen badu elementuen presentzia
independentea dela esan nahiko du. Azkenik, 1 baino balio altuagoa hartuz gero elementuak
batera azaltzeko joera dutela esango du.

2.4 Content-based-filtering eta Collaborative filtering

Teknika hauek objektu edo produktu batekiko erabiltzaileek duten preferentzia edo balorazioa
aurresaten saiatzen diren teknikak dira. Mota honetako teknikak, gaur egun oso ezagunak
diren Amazon, Netflix edo Youtube moduko web-orrialdetan erabiltzen dira erabiltzaileen
gustuak jakinda produktu, serie edo bideo berriak gomendatzeko.

Sistema hauek bi adar nagusitan banandu daitezke: Content-based filtering eta Collaborative
filtering.

2.4.1 Content-based filtering

Metodo mota hauek produktuen deskripzioetan eta erabiltzaileen gustuetan oinarritzen dira.
Hemen hitz gakoak produktu desberdinak deskribatzeko erabiltzen dira eta erabiltzaileen
gustuak hitz gako hauen arabera ezartzen dira. Horrela, erabiltzaileak produktu bat ondo
baloratzen badu (edo erosten badu), algoritmoak produktu horren antzeko ezaugarriak
dituzten beste batzuk gomendatuko ditu.

Content-based filtering moduko algoritmoak garatzeko hainbat modu desberdin dauden arren,
ondoren problema modu analitiko batean ebazteko algoritmo bat azalduko da. Hala ere, mota
honetako problemak bayesian classifier, cluster analisis, decision trees edota sare neuronal-en
bitartez ebatz daitezke, emaitza sinpleagoak lortuz.

2.4.1.1 Algoritmoa

Demagun ondoko taulan erabiltzaile desberdinek hainbat pelikulei emandako balorazioak

ditugula:

Izena\pelikula | Eraztunen | Harry Star Wars | American Deadpool
Jauna Potter pie

Ane 0 ? 3 ? 4

Leire 2 0 ? 5 ?

Aitor ? 5 3 2 5

Jon 5 4 4 ? 4

Ohartu taulak elementu galduak dituela, arraroa baita pertsona guztiek pelikula guztiak
ikustea. Hortaz aparte, demagun ondoko taulan pelikulen ezaugarriak laburtzeko erabilitako
parametroak ditugula:

Pelikula\Ezaugarria | Akzioa Fantasia komedia
Eraztunen Jauna 0.8 0.9 0.2
Harry Potter 0.6 0.9 0.3
Star Wars 0.6 0.8 0.1
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American pie 0.01 0 0.9

Deadpool 0.8 0. 0.8

Demagun N; erabiltzaile eta N, pelikula desberdinez osatutako datu basea aztertu behar
dugula. Orduan bi matrize izango ditugu. Alde batetik, N; X N, dimentsioko matrize bat izango
dugu, i erabiltzaile bakoitzak j pelikula bakoitzari emandako Yij balorazioarekin. Bestetik,
N, X d matrizea izango dugu film bakoitzaren x; ezaugarriekin, d > 0 balio arbitrario bat
izanda.

Algoritmo honen helburua i erabiltzaile bakoitzari dagokion 8; gustuak deskribatuko dituen
bektorea lortzea da. Behin bektore hauek lortuta erabiltzaileek pelikulei emandako balorazioa
(Oi)ij moduan berreskuratu ahalko da.

Pertsona bakoitza modelatzen duen 6; bektoreak lortzeko, beste metodoetan egin den
moduan, errorea kalkulatzen duen balio funtzio bat minimizatu beharko da:

Cost(0) = %Zli\]:ll ?I:Zr(i,j)ﬂ((ei)ij — yij)z non i erabiltzaileak j pelikulari balorazioa eman
badio 7r(i,j) =1 izango den. Hemen ere, ereduak aztertzen dituen datuak ez ikasteko
erregularizazioa parametro bat esleituko zaio, ondoko funtzioa lortuz:

1 2 A
Cost(8) = 3 X% X jy=a (0% — yi5)” + 520" Bitey 0.

Balio funtzio honen minimoa aurkitzeko lehen azaldutako gradient descent teknika erabili
daiteke.

2.4.2 Collaborative filtering

Content-based filtering metodoen kasuan ez bezala, mota honetako teknikek erabiltzaileen
aktibitatea, preferentziak eta testuingurua kontuan hartzen dituzte, hauen arteko
antzekotasunak bilatuz. Hau eginda, antzekoak diren erabiltzaileak antzeko produktuak
gustuko dituztela suposatzen da. Metodo mota hauetan, lehenago ikusitakoekin ez bezala,
produktuen ezaugarriak ez dira aztertzen eta, beraz, pelikulak bezalako objektu konplexuak
gomendatzeko gai dira hauen ezaugarriak jakin gabe.

2.4.2.1 Algoritmoa

Kasu honetan, aurreko tauletatik lehenengoarekin nahikoa izango litzateke, hau da:

Izena\pelikula | Eraztunen | Harry Star Wars American Deadpool
Jauna Potter pie

Ane 0 ? 3 ? 4

Leire 2 0 ? 5 ?

Aitor ? 5 3 2 5

Jon 5 4 4 ? 4

Mota honetako tekniketan, pertsona bakoitzaren 6; gustuez aparte, pelikula desberdinen x;
ezaugarriak ere modelatuko dira. Horretarako, ondoko balio funtzioa minimizatu beharko da:
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Cost(@,x)=%21ivzll ﬁzr(i’j)zl((ei)ij—yij)z non i erabiltzaileak j pelikulari balorazioa
eman badio 7(i,j) = 1 izango den. Lehenago ikusi den moduan, ereduak aztertzen diren

datuak ez ikasteko, erregularizazioa parametro bat esleituko zaio, ondoko funtzioa lortuz:
—1yN: yd T 2 | ANy wd 2 L AgN: vd

Cost(0,x) = ;Ziil j;r(i_j)=1((9i) Xj — Yij) + 521121(:1 Ok + 52ji1 Yk=1 Xjk-

Aurreko kasuan bezala, hemen ere minimoa gradient descent teknikaren bitartez lor daiteke.

Pelikulen adibidearekin jarraituz, gomendioak egiteko garaian bi kasu desberdin bereziko
ditugu. Alde batetik, 6; elementu desberdinak konparatuz antzeko gustuak dituzten
erabiltzaileak aurki daitezke. Demagun i; eta i, erabiltzaileak antzeko gustuak dituztela
(||9i1 - 9i2||2~0), orduan logikoa litzateke i;-ek gustuko dituen pelikulak i,-ri ere gustatzea
eta alderantziz. Bestetik, pelikulen ezaugarriak jakinda eta i; erabiltzaileak j; pelikula gustuko
duela jakinda, pelikula horren antzerako pelikulak ere gustuko dituela suposa daiteke. Beraz,

edozein j pelikula j;-en antzerakoa bada gomenda daiteke, hau da, ||xj—xj1||2~0 betetzen

duen edozein pelikula i; erabiltzaileari gomenda dakioke.

Gure sistema duen plataformara erabiltzaile berri bat sartzerakoan, honen gustuen daturik ez
da egongo eta, beraz, ezin izango dugu beste erabiltzaileekin konparatu. Adibidez, aurreko
adibideekin jarraituz, erabiltzaile berri bat sartzerakoan demagun ondoko egoeran gaudela:

Izena\pelikula | Eraztunen | Harry Star Wars | American Deadpool
Jauna Potter pie

Ane 0 ? 3 ? 4

Leire 2 0 ? 5 ?

Aitor ? 5 3 2 5

Jon 5 4 ? 4

Jone ? ? ? ? ?

Kasu honetan, ezinezkoa da erabiltzaile berriaren gustuak inferitzea, informaziorik ez baitugu.
Mota honetako oztopoak gainditzeko aukera posibleetatik bi aipatuko ditugu. Lehena eta
egiten sinpleena, pelikulen balorazioen batez bestekoak erabiltzaile berriaren balorazio
moduan kontuan hartzea da. Hau eginda, hasiera batean erabiltzaile gehienek gustuko
dituzten produktuak gomendatuko dira. Bezero berriak produktuak baloratzen doan heinean,
gomendioak pertsonalagoak izango dira. Bigarrena, erabiltzaile berri bat sartzerakoan,
produktu sorta baten balorazioa ematea da. Horrela, bere gustuak modelizatzeko beharrezko
hasierako datuak izango ditugu.

2.4.3 Teknikak hobetzen: Metodo hibridoak

Teknika mota biak bakarka emaitza onak eman arren, metodo hauek konbinatuz lortutako
emaitzak hobetzen direla ikusi da.

2.4.4 Kontuan hartu beharreko puntuak

e Aztertuko diren datuek gehienbat datu galduak izango dituzte, oso arraroa da
erabiltzaile guztiek produktu guztiak aztertu izana.

e Gomendioak egiterako garaian beharrezkoa da erabiltzaileen artean korrelazioa
egotea.
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e Erabiltzaileen balorazioez aparte beste datu batzuk kontuan har daitezke: adina,
nazionalitatea...

2.5 Markov Models

Orain arte ikusitako ereduak eratzeko aztertutako aldagaiak I.I.D (askeak eta berdinki
banatuak) zirela onartzen zen. Hala ere, bizitza errealean badaude hainbat kasu non L.I.D
hipotesia ezin izango den bete, adibidez, orduko egongo diren prezipitazioak, grabatutako
audio baten ezaugarri akustikoak edo eguneko moneta aldaketa ratioak modelatzerakoan, argi
ikusten da hurrengo balio aurreko balioen araberako izango dela.

Kasu hauetan, ezingo lirateke aurretik ikusitako teknikak erabili. Mota honetako aldagaiekin
lan egiteko Markov Models deituriko ereduak erabiliko ditugu. Ondoren, Marko Chains eta
Hidden Markov Models aztertuko dira.

2.5.1 Markov chain

Probabilitate teorian Markov-en prozesua Markov-en propietatea betetzen duen prozesua da.
Propietate hau “memorylessness” moduan ere ezagutzen da eta gertakizun kate batean
etorkizuneko gertakizunak iraganeko gertakizunekiko independenteak direla esan nahi du.
Horrela, etorkizuneko momentu bat modelatzeko, momentuko egoera bakarrik aztertu
beharko da.

Modu matematikoago batean esanda, (xy,...,x,) egoera desberdinen segida badugu, s;
elementuaren egoera s;_; elementuaren egoeraren menpekoa bakarrik izango da, hau da:

P(xt|x1, X3, ...,xt_l) - P(xt|xt_1) Vi € {1, ...,n}
izango da.

Markov kateen adibide ezagun bat “mozkorraren ibilera” moduan ezagutzen da. Demagun
zenbaki arrunten (0,1,2,....,,n) zuzenetik dabilela eta dagoen zenbakitik hurrengo zenbakira
joateko probabilitate eta aurrekora joatekoa 0.5-eko dela. Orduan, 5 zenbakitik 4 zenbakira
joateko probabilitatea 0.5-ekoa izango litzateke, 5 zenbakitik 6 zenbakira joateko
probabilitatea bezala. Ohartu probabilitate hauek aurreko egoerekiko independentea dela, hau
da, ez du inporta 5 zenbakira 6 edo 4 zenbakietatik ailegatu den.

Beste adibide sinple moduan demagun animali omniboro baten dieta aztertzen gaudela.
Animalia hurrengo egunean haragia edo barazkiak jango dituen jakin nahiko genuke. Demagun
ere ondoko probabilitateen taula dugula:

Gaur/Bihar Haragia Barazkiak
Haragia 0.75 0.25
Barazkiak 0.6 0.4

Orduan ondoko Markov-en Katea edukiko genuke:

0.6

0.75 < 0.4
\ &
g Haragia > Barazkiak >

0.25 >
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Egoera batetik bestera pasatzeko probabilitateek trantsizio matrizea deituriko matrizea
osatzen dute. Kasu honetan ondoko matrizea edukiko genuke:

w= (075 025)

0.6 04

Matrize honen M;; elementu bakoitzak i egoeratik j egoerara pasatzeko probabilitatea
adierazten du. Kasu orokorrago batean, demagun 6 egoera desberdin daudela, orduan ondoko
matrizea izango genuke:

P11 P12z P13 Pia P15 P16
D21 P22 P23 P24 P25 DPae
P31 P32 P33 P34 P35 DPse
Pa1 Paz2 Pa3z Pas Pis DPae
\P51 Ps2 P53 Psa  Pss P56/
Pe1 DPe2 P63 Pea Pes DPes

Ohartu matrize honen lerro desberdinen elementuen batura beti 1 izango dela.

Matrize hau hasiera batetik definituta etor daiteke, aurreko adibidean bezala, edo bakoitzak
definitu beharko du. Horretarako, egiantza handieneko metodoa erabil daiteke. Demagun, n
elementuko segida bat dugula eta i egoeratik j egoerara pasatzeko probabilitatea (M;; izango
dena) jakin nahi dugula. Orduan M;; elementurako, ditugun n elementuetatik i egoeratik j
egoerara zenbatetan igarotzen da zati i egoeran dauden elementu kopurua har dezakegu, hau
da:

M. = TRZO T (g = 6 Xperr =)
Y TR (g = 1)

Matrize hau oso garrantzitsua da eredu osoa definitzen baitu. Aztertutako elementua w;
egoera batean badago eta hurrengo momentuan zein w; 4 egoeratan egongo den jakin nahi
badugu nahikoa izango da w;,; = w:M kalkulatzea. Kontzeptu hau orokortuz, hasierako wy,
egoera batetik abiatuz t momentu pasa eta gero elementua duen egoera jakin nahi izanez
gero, nahikoa izango da w, = wyM¢ kalkulatzea.

Aplikazio pare baten adibideak ikusi baino lehen hauek ulertzeko garrantzitsua izango den
azkeneko kontzeptu bat ikusiko dugu, Stationary Distribution. Stationary Distribution
deiturikoa hasierako egoera batetik infinitu aldiz mugitu ostean lortzen den egoera da, hau da,
We = lim;_,o, W;. Stationary Distribution-a existituko da baldin eta soilik baldin ondoko bi
baldintzak betetzen dira:

1. Edozein egoeratik edozein egoeratara heldu daiteke.
2. Egoera sekuentziek ez dituzte inolako buklerik.

Ohartu orain arte Markov kateen artean sinpleenetariko bati buruz hitz egin dugula, first order
Markov chain deituriko. Hemen, egoera berriak inferitzeko aurreko egoera bakarrik kontuan
hartzen da. Hala ere badaude eredu konplexuagoak, egoera gehiago kontuan hartzen
dituztenak m-order-Markov-chain.
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2.5.1.1 Aplikazioen adibidea: Ranking-ak

Markov-en kateek objektuen rankingak egiteko balio dute. Hemen, aztertuko diren datuak
objektuen arteko konparaketak izango dira. Adibide moduan, kirol talde edo kirolarien
rankingak egin daitezke. Kasu hauetan, helburua objektuak “onenetatik” “txarrenetara”
ordenatzea izango litzateke.

Rankingak egiteko trantsizio matrize bat eratuko da non egoera bakoitza talde/kirolari bat den.
Orduan, Stationary distribution-a lortzerakoan bilatzen ari garen emaitza izango dugu.

Matrizea eraikitzeko momentuan galtzen duten taldeetatik irabazten duten taldeetara joatea
bermatuko da. Hau da, A taldeak B taldeari irabazten badio, B->A probabilitatea A->B
probabilitatea baino altuagoa izango da. Lotura hau gogorragoa izan daiteke partidaren
markagailuaren arabera. Bukatzeko, matrizearen lerroak normalizatzen dira hauen batura 1
izateko. Hau eginda, Markov-en katearen stationary distribution-a bilatu egiten da eta
lortutako bektorearen balioak taldeen arteko rankinga emango digu. Probabilitate handien
dituzten egoerak talderik onenak izango dira eta probabilitate baxuenekoak, aldiz, txarrenak.

2.5.1.2 Aplikazioen adibidea: Klasifikazioa "

. B TS
Demagun datu asko baina datuen kopuru txiki baten : '_ * "";. —?‘-,
etiketak bakarrik ditugula eta datuak duten egituraz 3:: ¢ y "
baliatuz etiketarik gabeko elementuen etiketak jakin . ° "' ) ‘.’rﬁ#’i ,.‘:
nahi ditugula. Datuak egituratuta badaude, Markov- .. Ve 5% 1‘- oy :
en kateen bitartez elementuen etiketa inferitu . :'._" :’é’"&‘f =:; .
daiteke. Adibidez, eskumako irudian datu kopuru - ‘ "t . ‘.:"‘"a“:.-':. . % .
handia dugu (puntu beltzak) etiketaturiko bi . '.'-,: W ". :
punturekin (elementu urdina eta gorria). Kasu ‘e o . ¢ -‘.:'.‘

v TR "

honetan, badirudi datuek egitura finko bat dutela
(puntu urdinak zentroan eta gorria eraztunean),
beraz, Markov-en kateez balia gaitezke.

Hemen ere trantsizio matrizea eratu egin behar da, hurbilen dauden puntuen artean
mugitzeko probabilitatea handiagoa emanez. Kasu honetan, etiketaturiko elementu batera
ailegatzean bertan geratuko da, hau da, x; etiketatutako elementu bat bada M;; = 1 izango da.
Puntu hauek absortzio egoerak deituko dira.

Azkenik, etiketa gabeko puntuen etiketa jakiteko puntu horietatik abiatuz eta trantsizio
matrizea aplikatuz lortzen den lehenengo absortzio egoerak aztertuko da. Bukatzeko, egoera
horrek duen puntuaren etiketa hasierako puntuaren etiketa izango da.

2.5.2 Hidden Markov Models

Orain arte ikusitako adibideetan behaketak neurgarriak ziren. Hala ere, hori ez da zertan beti
gertatu behar. Batzuetan baliteke aztertuko diren egoerak neurgarriak ez izatea edo hauek
neurtzeko aukera ez izatea. Kasu horietan lagungarria lirateke Hidden Markov Models
erabiltzea. Hemen, neurgarriak diren obserbazio sekuentzia batetik abiatuz {xq,...,x,}
aztertuko diren egoerak lortzen dira.
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Adibide teoriko moduan, demagun Ane eta Jon elkarrengandik urrun bizi diren bi lagun direla.
Demagun ere telefonoz egunero hitz egiten dutela. Jonek eguraldiaren arabera hiru ekintza
nagusi egiten ditu arratsaldeetan, kirola, erosketak edo ordenagailuan ibili. Demagun Jonek
egun bakoitzean egindako ekintza Aneri kontatzen diola. Datu horiekin, Anek egun bakoitzean
egindako eguraldia jakin nahiko luke, bi gertaeren artean erlazioa argia ikusten baitu. Hau
Hidden Markov Model aplikatzeko egoera aproposa litzateke. Anek bere lagunak egindako
ekintzak dakizkien arren ez dauka egun bakoitzeko eguraldiaren informazioa. Demagun, Anek,
Jonen herriaren eguraldiaren joera ondoko probabilitate banaketa jarraitzen duela dakiela:

Gaur/Bihar Eguzki Euri
Eguzki 0.6 0.4
Euri 0.3 0.7
Eguzki 0.4

Euri 0.6

Gainera, Jonek ondoko ohiturak dituela ere badakiela:

Gaur/Bihar Kirola Erosketak Ordenagailua
Eguzkia 0.6 0.3 0.1
Euri 0.1 0.2 0.7

Datu guzti hauekin Anek Jonek egun bakoitzean egindako aktibitate jakinda egun horretako
eguraldiaren probabilitatea jakiteko informazioa izango du.

Ondoko bi artikuluetan pare bat adibide praktiko ikusi ahalko dira. Lehenengoan, eredu hauek
medikuntza arlora aplikatuta lortutako emaitzak ikus daitezke. Bigarrenean, seinu hizkuntzaren

keinuak duten esanahia inferitzen saiatzen dira.
Metodo honen kasuan hiru osagai nagusi izango genituzke:

M, trantsizio matrizea, egoera batetik bestera aldatzeko probabilitateak dituena.
M, emisio matrizea, elementu bakoitza egoera bakoitzetik sortua izateko
probabilitatea adierazten duena.

3. m hasierako egoeren probabilitateen banaketa.

Aurreko adibidean ondoko matrizeak izango genituzke:

0.6 0'4);M€=(0'6 0.3 0.1

M= (o3 07 01 02 07)i7= (04 06)

Datu hauek aurretik emanda egon daitezke, adibidean ikusi den moduan adibidez. Hala ere,
beste kasu batzuetan inferitu behar izango dira. Aztertutako kasu hau, bereziki, Hidden Markov
Model diskretua izango litzateke, egoerak diskretuak baitira. Bukatzeko, teknika honek hiru
egoera nagusien aurrean erabili ohi da:

1. Obserbazio sekuentzia bat {xi,..,x,} eta {m, M; M,} elementuetatik abiatuz
{s1, ..., S} egoera bakoitza gertatzeko probabilitatea jakin nahi denean. Horretarako,
forward-backward algoritmoa erabiltzen da.
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2. Obserbazio sekuentzia bat {xj,..,x,} eta {m M; M.} elementuetatik abiatuz,
probableen den egoera sekuentzia {sy, ..., S, } lortu nahi denenan. Horretarako Viterbi
algoritmoa erabiltzen da.

3. Obserbazio sekuentzia {xy, ..., x,} batetik abiatuz ereduaren {m, M, M,} elementuak
lortu nahi denean. Horretarako, egiantza handieneko metodoa erabiltzen da.

Bukatzeko, hemen azaldutako eredua diskretua bada ere, badago metodo hau egoera espazio
jarraitu batean aplikatzea, adibidez, egoera denbora izanda.
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3.Sare neuronalak

Sare neuronalak animalien neuronen sarearen funtzionamendua imitatzen saiatzen diren
teknikak dira. Sare hauek, naturan gertatzen den moduan, neurona deituriko
interkonektatutako nodo desberdinez osatuta daude. Teknika hauek gehienbat “supervised
learning” motatako eginkizunetarako erabiltzen badira ere, badaude “unsupervised learning”
motatako lanak egiteko gai direnak. Hortaz aparte, robotikaren munduan ere erabili ohi dira,
kotxe autonomoen garapenean adibidez.

Sare neuronalen egitura, normalean, hiru zati nagusietan banatzen da:

1. Sarrerako geruza: “Input layer” deiturikoa, hemengo nodoetan hasierako datuak
sartuko dira (balio kategorikoak ,jarraituak, argazkiak, testua, etab.).

2. Ezkutuko geruza: “Hidden layers” deiturikoa, hemen sarrerako datuetatik habiatuz
beharrezko konbinazioak egin eta funtzio desberdinak aplikatzen dira.

3. lIrteera geruza: ”Output layer” deiturikoa, irteerako balioak dituzten neuronez osatuta
dago (kategoriak, balio jarraituak, argazkiak, etab.). Helburuaren arabera aurreko
ezkutatutako kapen konbinazio lineala edo honi aplikatutako funtzio bat izango du.

Oinarrizko sare neuronaletan, geruza batetik besterako bidean, aurreko geruzaren neuronen
konbinazio lineal desberdinak egiten dira, pisu deituriko balio eskalarrak erabiliz. Ondoren,
nodo bakoitzean step-function edo activation function deituriko funtzio bat konbinazioan
lortutako balioari aplikatzen zaio, neurona bakoitza aktibatzen den edo ez edo neurona
bakoitzaren eragina jakiteko. Ondoren oinarrizko sare neuronal baten egitura ikus daiteke:

input layer hidden layer 1 hidden layer 2 output layer

Aurreko irudiko sare neuronalak ondorengo prozesua jarraituko luke:

1. Hasierako kapan gure datuen lehenengo elementuaren aldagaiak sartuko lirateke
X1 = (X11, %12, %13)-

2. Lehenengo ezkutuko geruzaren j € {1, ...,4} nodo bakoitzeko, w;, wj, eta wj; pisuak
egongo lirateke.

3. Nodo bakoitzean y;; = f;j(Wj;X11 + WjaX1, + Wj3x,3) aurreko geruzaren balioen
konbinazio lineal bati f;aktibazio funtzioa aplikatuko litzaioke.
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4. Bigarren ezkutuko geruzan aurreko geruzaren prozesu berdina jarraituko zen, k
neurona bakoitzeko wyq, Wy, eta wys pisu eta fiaktibazio funtzio berriekin, y,;
balioak lortuz.

5. Azkenik, aurreko kasuen moduan, irteera geruzara azkeneko ezkutuko geruzaren
balioen konbinazio lineal bati azkeneko aktibazio funtzioa aplikatuz lortutako balioa
esleituko litzaioke, wy, w,, w3 pisu eta f aktibazio funtzioak erabiliz eta y irteera
balioa lortuz.

Sare neuronal sinpleenetarikoen artean 1. atalean ikusitako Perceptron algoritmoa,Erregresio
Lineal Sinplea edota Erregresio Logistiko Sinplea egongo lirateke. Hauek, ondorengo irudiko
egitura izango lukete, aktibazio funtzio desberdina aplikatuz.

Weights
Constant @\
WO

Weighted
Sum

Step Function

inputs — @/r W,

Perceptron-en kasurako seinu funtzioa erabiliko genuke. Erregresio Lineal Sinple-rako, aldiz,
identitate funtzioarekin nahikoa izango genuke edota geroago ikusiko den ReLU funtzioarekin
(gure etiketatutako datuek balio negatiboak ez dituztenean). Azkenik, Erregresio Logistiko
Sinple-rako, sigmoide funtzioa erabiltzearekin nahikoa genuke.

3.1 Aktibazio funtzioak

Ikusi den moduan, aktibazio funtzioaren aukeraketak bukaerako ereduan eragin handia dauka.
Hain zuzen ere, klasifikaziorako balio duen eredu batetik erregresiorako balio duen eredu
batera pasatzea ahalbidetzen gaitu. Ondoren, funtzio nagusi batzuk aipatuko dira:

Funtzioaren izena Funtzioa Grafikoa

Identity flx)=x

i Ononx <0 |'
Sy sice f@) = {1 nonx =0 L)

. | i
e O =135 |
Sigmoid (Logistic)

1 o
[ =Te= T
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ReLU(Rectified linear unit) Flx) = {0 nonx <0
xnonx =0

Adibide guzti hauek nodo bateri bakarrik eragiten diete, baina badira geruza berdineko nodo
guztietara sartzen den informazioa kontuan hartzen duten funtzioak; adibidez:

Funtzioaren izena Funtzioa

Xi

Yhoq ¥k

Softmax

fi(®) =

Azken funtzio hau besteak beste klase anizkoitzen klasifikaziorako erabiltzen da.

Aktibazio funtzioekin bukatzeko, ohartu hemen azaldutako funtzioak existitzen diren funtzioen
portzentaje txiki bat direla. Hortaz aparte, posiblea litzateke funtzio propioak erabiltzea, bai
asmatutakoak, baita ikusitako baten bariazioak ere.

3.2 Sarrerako eta irteerako datuak

Esan dugun moduan sare neuronalek zenbakiekin lan egiteaz gain, aldagai kategorikoekin,
argazkiekin edota testuarekin lan egiteko gai dira. Hala ere, kalkuluak egin ahal izateko
zenbakiak behar direnez, aldagai mota guzti hauek transformatu beharko dira.

Aldagaiak kategorikoak badira, bi kategoria daudenean hauei 1 eta 0 balioak eman dakieke.
Bestalde, n badaude, n aldagai berri sortzearekin nahikoa litzateke 1 edo O balioekin. Aldagai
bakoitza kategoria bat definituz.

Aldagaiak argazkiak direnean bi kasu bereiz genituzke. Alde batetik, kolorea garrantzitsua ez
denean argazkia gris eskalara pasa daiteke. Horrela, argazkia pixelez osatutako n * m-ko
matrize bat izango litzateke. Orduan, matrizea nm elementuko bektore bihurtuko zen,
elementu bakoitza aldagai bat izanda. Bestetik, kolorea garrantzitsua denean aurreko gauza
bera egin daiteke baina, kasu honetan, n * m * 3 dimentsioko matrize bat izango genuke eta
lortutako hiru bektoreak bata bestearen atzean jarriko genituzke.

Azkenik, testuarekin lan egiterakoan hainbat aukera egongo lirateke. Alde batetik, agertzen
den hitz bakoitzeko aldagai bat sor daiteke. Hemen, aztertzen diren esaldietan, hitz bakoitza
zenbat aldiz agertzen den aztertuko litzateke. Bestetik, agertzen diren hitzen sustraiak atera
(batetik -> bat esaterako) daitezke. Hau egiterakoan, sustrai bakoitzeko aldagai bat egitearekin
nahikoa litzateke, 1 edo O balioa emanez.

3.3 Sareak entrenatzen

Sare neuronal bat eratzerako orduan, lehenik eta behin, honen egitura aukeratu behar da. Hau
da, zenbat geruza eta zenbat nodo erabiliko diren aukeratu behar da. Honetarako ez dago
erantzun finkorik. Helburuaren arabera baliteke aurretik finkatutako konfigurazio batzuk
aztertuta jada egotea baina gehienetan froga desberdinak egin beharko dira egitura egokia
aurkitu arte. Estruktura bat hautatu eta gero erabiliko diren pisuak definitu behar dira.
Horretarako, erabiliena den metodoa 1. ataleko metodo batzuetan erabilitako Gradient
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Descent teknikaren oso antzekoa da, Backpropagation deiturikoa. Teknika honetan hasieran
pisuak ausaz aukeratzen dira eta datuei sarea aplikatzen zaie. Ondoren, lortutako emaitza
(hasiera baten seguruenik txarra izango dena) emaitza errealarekin konparatu egiten da eta,
errorearen arabera, pisuak egokitzen dira. Metodoa modu sakonago eta bisualago batean
ondoko estekan ikus daiteke.

3.4 Beste sare neuronal mota batzuk

Orain arte aztertutako sareak oinarrizkoenak lirateke, Multilayer FeedForward fully conected
Neural Networks moduan ezagutzen direnak. Hala ere, badira beste sare mota asko. Ondoren
beste 4 sare familien adibideak ikusiko dira.

3.4.1 Convolutional Neural Networks: CNN

Argazkiekin lan egiterakoan, klasifikaziorako normalean, interesgarria da argazkien ezaugarriak
detektatzeko gai den eredu bat izatea, hau da, aurpegiak detektatzen duen eredu bat nahi
izatekotan, ereduak belarriak, begiak, ezpainak etab. dauden edo ez jakitea baliagarria

= AR

— TRUCK

— VAN
[=] O

litzateke. Hori da hain zuzen ere mota honetako sareen eginkizuna.

7z

— BICYCLE

FULLY
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU  POOLING FLATTEN L rerep SOFTMAX
FEATURE LEARNING CLASSIFICATION

Sare mota hauek aurretik aipatutako geruza motez aparte beste bi mota berri erabiltzen ditu:
Convolutional layers eta Pooling layers. Lehenengoak argazkiei filtro desberdinak pasatzen die
hauen ezaugarriak isolatzeko asmoz eta bigarrenak aztertzen diren ezaugarrien dimentsioa
txikitzen du gero eta zehatzagoa izan dadin. Normalean, mota honetako sareetan aipatutako bi
geruza horiek erabiltzen dira ezaugarrien eragina ateratzeko eta gero, klasifikazioa egiteko
helburuarekin, hasieran azaldutako sareak erabiltzen dira.

3.4.2 Recurrent Neural Networks

Batzuetan ereduak “memoria” izatea interesatzen da, hau da, ereduak lehenago lortutako
emaitzak hurrengo datuetarako kontuan izatea. Kasu horietan mota honetako sareak
erabiltzen dira. Normalean, testua edo soinua sortzeko edo aztertzeko erabiltzen diren
sareetan erabili ohi dira, hemen testuinguruak garrantzi handia baitu.

onet: one (ie to many many to oza manyt: many miwt: mTy
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3.4.3 Generative Adversarial Nertworks

Bere izenak dioen moduan, mota honetako sareek lehiaketaren bitartez sortzen diren sareak
dira. Normalean, bi sare desberdinez osatuta daude, Generative eta Discriminative deiturikoak.
Hauen helburua, kasu askotan, data sortzea izaten da. Lehenengo motako sareek data sortzen
ikasten dute eta bigarren motakoek data benetakoa den edo asmatutakoa den bereizten
saiatzen dira. Horrela, datuak gero eta hobeago sortzerakoan discriminative den sareak gero
eta emaitza txarragoak emango ditu, eta beraz, zuzenketa gogorragoak izango ditu bere
pisuetan. Bestela, justu kontrakoa gertatuko litzateke eta generative dena zuzenketa
nabarmenagoak izango lituzke.

Tihis floveer has small, round violer . . Tihiz flower has small, rownd violer
petals with a dark purple cenrer T = Gz, (1)) perals with a dark purple cemnter
p ]

PC o
I

~

“U . - )

D&, (1))

Generator Network Discriminator Network

3.4.4 Deep Reinforcement Learning

Azken mota honetako sareek ingurumenetik ikasten dute. Normalean robotikan erabili ohi dira
eta esperientziatik hobetzen duten ereduak dira. Hasiera batean ausazko portaera bat izango
dute eta gero eta saiakera gehiago egin orduan eta emaitza hobeagoak izango dituzte.

Reward

Agent

State Take Environment

action

parameter 0

Observe state

Ondorengo bideoetan aipatutako Convolutional Neural Networks, Recurrent Neural Networks,

Generative Adversarial Netwroks eta Deep reinfocement Learning metodoen adibideak ikus

daitezke.

3.5 Abantailak vs Desabantailak

Bukatzeko, sareen abantailarik handiena ia edozer egiteko gai direla da. Gainera berrerabili
daitezke, hau da, demagun katuak detektatzen dituen sare bat dugula baina txakurrak
detektatu nahi ditugula. Orduan, sare berri bat zerotik hastea ez da beharrezkoa izango.
Katuetarako erabiltzen den saretik abiatuz denbora gutxiagoan txakurrak detektatzen dituen
eredu bat lortuko dugu. Bestalde, interpretatzen oso zailak dira, normalean ehunka edo milaka
neurona erabiltzen dira geruza bakoitzean eta bakoitzak zer egiten duen jakitea zaila izaten da.
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4. Entrenamendu, test eta balioztatze multzoak

Supervised  Learning  eta Sare
Neuronalen kasuetan, ereduak garatzeaz Original Data
aparte hauen kalitatea ere neurtu Training Data Testing Data
beharko da. Eginkizun honetarako
Training Data Validation Data Testing Data
ereduak garatzeko erabilitako datu
berdinak erabili ezkero, kasu erreal £ &
batean (eredurako ezezagunak diren g zfv@ RN
datuekin) baino emaitza hobeagoak Machine < %@‘)@Q
lortzea gerta daiteke. Hori saihesteko, ALIZerT::.i @@Q&
normalean, eskuragarri dauden datuak \QQS‘&
hiru multzotan banatzen dira: 25

Entrenamendurako multzoa, balioztatze Model
multzoa et test multzoa.

Hasteko, entrenamendurako multzoak eredua ikasteko erabiliko diren datuak izango ditu.
Hauek aurreko orrietan azaldutako parametroak, normalean pisuak, ikasteko erabiltzen dira.
Entrenamendurako multzoarekin batera balioztatzeko multzoa ere aukeratzen da. Bigarren
multzo honen helburua ereduen hyperparametroak aukeratzea eta entrenamenduaren
overfiting-a kontrolatzea izango da. Multzo hau, adibidez, sare neuronalen geruza kopurua edo
aktibazio funtzioak aukeratzeko erabiltzen da. Sare neuronalen kasuan, sare mota desberdinak
definituko lirateke, entrenamendurako multzoa erabiliz hauen pisuak kalkulatuz. Hau egin
ostean, lortutako ereduak balioztatze multzoko datuetan aplikatu eta lortutako emaitzak
aztertuko dira, hyperparametro hoberenak dituen sarea aukeratuz. Azkenik, test multzoa
eredu finalaren kalitatea neurtzeko erabiltzen da. Datu hauetan eredua aplikatuko zen,
aurretik finkatutako emaitzekin konparatuz.

Hiru multzo hauen erabileraren adibide moduan, sare neuronal baten kasuaren prozesua
ondokoa litzateke :

1. Entrenamendu multzoko datuekin eredu finalerako hautagaiak izango diren sare
desberdinak sortzen dira .
2. Balioztatzeko multzoko elementuak lortutako ereduetan aplikatzen dira.
Lortutako emaitzak aztertzen dira, hyperparametro egokienak dituen sarea aukeratuz.
Hemen, eredua balioztatze multzoko datuetarako egokituta egotea gerta daiteke.
4. Balioztatze prozesuko ereduak test multzoan lortzen dituen emaitzak aztertzen dira.
4.1. Accuracy, sensitivity, specificity, F-measure moduko neurriak erabiliz.
5. Lortutako emaitzak egokiak ez badira.
5.1. Eredu ez da egokia izango.
5.2. Eredu berriak garatu beharko dira.
6. Lortutako emaitzak onak badira.
6.1. Eredu finala lortu da, kasu errealetan testatzeko prest dago.

4.1. Multzoak definitzen
Machine Learning-aren munduko egoera askotan gertatzen den moduan, multzoak aztertzen
den problemaren arabera eta eskura dauden datuen arabera aukeratuko dira. Garatuko den
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eredua hyperparametro gutxi baditu, adibidez, balioztatze multzo txiki batekin nahikoa
litzateke. Kontrako kasuan, hauen kopurua handia bada, balioztatze multzoa handitzea
gomendagarria litzateke. Bestalde, eskura dauden datuen kopurua txikia bada, baliteke datu
guztiak eredua garatzeko behar izatea, kasu optimoa ez bada ere.

Hau kontuan hartuta, kasu idealean hasierako multzoa bitan banatzen da, eredua garatzeko
multzoa eta test-erako multzoa. Hemen, ereduarentzako multzoa test multzoa baino
handiagoa izatea gomendatzen da. Hasierako banaketa egin eta gero, ereduaren multzotik
entrenamendurako eta balioztatzerako erabiliko diren multzoak lortzen dira. Bigarren pausu
honetarako Cross-validation edo balioztatze-gurutzatua deituriko teknikak erabili ohi dira.
Balioztatze-gurutzatu mota desberdinak daude eta hauek bi multzotan banan daitezke:
balioztatze gurutzatu sakonak eta balioztatze gurutzatu ez sakonak. Ondoren bi multzo
hauetako metodo batzuk aipatu eta azalduko dira:

1. Balioztatze gurutzatu sakonak:
1.1. Leave-one-out balioztatze gurutzatua
1.2. Leave-p-out balioztatze gurutzatua

2. Balizotatze gurutzatu ez sakonak:
2.1. K-fold edo k-hosto balioztatze gurutzatua
2.2. Holdout metodoa
2.3. Monte Carlo balioztatze gurutzatua

Balioztatze gurutzatu sakonek multzoan existitzen diren konbinazio guztiak kontuan hartzen
dituzte. Leave-one-out kasuan, adibidez, eredurako erabiliko den multzoa n elementu baditu
entrenamendurako n — 1 hartuko ditu, faltatzen den elementua balioztatze prozesurako utziz.
Gauza bera n aldiz egingo litzateke bakoitzean elementu desberdin bat balioztatzerako erabiliz.
Leave-p-out metodoa, aldiz, aurreko kasuaren orokortasun bat da. Hemen, iterazio bakoitzean
n — p elementu entrenamendurako erabiliko dira p kasu balioztatze prozesurako utziz. Ohartu
lehenengoaren kasuan n elementurako n konbinazio posible bakarrik dauden arren leave-p-
out metodoaren kasuan konbinazio kopurua (n elementurako CZ} konbinazio) askoz handitzen
dela. Adibidez, demagun n =50 eta p = 2 ditugula, orduan leave-one-out kasuan 50
konbinazio konprobatuko litzateke eta leave-p-out-ren kasuan, aldiz, 6'250 = 1225.

Bestalde, balioztatze gurutzatu ez sakonen kasuan ez dira zertan aukera posible guztiak aztertu
behar. Hemen, k-hosto balioztatze gurutzatuan ereduarentzako aukeratutako multzoa ausaz k
azpimultzotan banatzen da. Ondoren, azpimultzo bat balioztatzerako gordeko da, beste k — 1
azpimultzoak entrenamendurako erabiliz. Bukatzeko, leave-one-out-en gertatzen zen moduan,
prozesua k aldiz errepikatuko da iterazio bakoitzean balioztatzeko azpimultzo desberdin bat
erabiliz. Holdout metodoari dagokionez, aldiz, eredurako erabiliko den multzo bi azpimultzotan
ausaz banantzen da, aurretik finkatutako proportzio batean (kontuan hartu, normalean,
entrenamendurako azpimultzoa balioztatzeko azpimultzo baino handiagoa izatea
gomendatzen dela). Kasu bi hauetan azpimultzo bakoitzean dauden elementuek antzeko
banaketa izan behar dute, hau da, azpimultzo guztiek aztertzen diren elementu mota
guztietako adibideak izan behar dituzte. Bukatzeko, Monte Carlo balioztatze gurutzatua dugu.
Kasu honetan portzentaje bat aurretik finkatzen da, demagun %80. Orduan, ausaz datuen %80-
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a entrenamendurako hartuko dira eta beste %20-a balioztatzerako. Hau egin ostean, prozesu
berdina hainbat aldiz errepikatuko lirateke.

4.2. Overfitting-a antzematen

Lehenago aipatu den moduan, balioztatze multzoa overfiting-a antzemateko ere erabiltzen da.
Horretarako, algoritmoak aplikatzen diren heinean, iterazio bakoitzean lortutako erroreak
aztertzen dira, bai entrenamenduko multzokoa baita balioztatze multzokoa ere . Ondoren,
erroreen bilakaera modu grafiko batean ikus daiteke:

Train-Validate-Test Error (in theory)

——Training Error ——Validation Error

Over-fitting likely
starting to occur

/

Error

Training Epoch

Grafikoan ikus daitekeen moduan entrenamenduko errorea beti txikitu edo konstante
mantenduko da. Hau beti gertatuko da, elementu berdinak algoritmoa entrenatzeko erabiltzen
direnez iterazioak pasa ahala datu berdinekin gero eta emaitza hobeagoak emango baititu.
Bestalde, 25. iteraziotik aurrera balioztatze datuen errorea txikitzen gelditu eta handitzen
hasten da. Puntu horretan algoritmoak informazio berria ikasteari utzi eta entrenamenduko
datuen emaitzak ikasten hasiko da eta, beraz, kasu honetan lor daitekeen modelorik onena
iterazio kopuru horrekin izango da.
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Autokorrelazio espaziala eta bero mapak

Egin den Euskal Autonomi Erkidegoko hotel eta pentsioen azterketarako erabilitako datuak bi
iturri nagusitik etorri dira: web plataformetatik eta Euskal Estatistika Erakundearen, Eustat,
turismoko direktorioetatik.

Eustat erakundeari dagokionez, Establezimendu Turistiko Hartzaileen Inkestako datuak erabili
dira. Hauek, hoteli eta pentsioei buruzko informazio gehigarria dituzte: Kategoria, Okupazioa,
logela kopurua, estratoa, koordenatu geografikoak...

Web plataformei dagokienez, Eustat erakundeak garatutako web scraping teknika
pertsonalizatu baten bitartez EAE-ko hotel eta pentsioen prezioak lortu dira. Gainera, prezioek
denboran bariazioak eduki ditzaketenez, aztertzen den eguna baino 120 egun lehenagotik
egun horretako hotelaren prezioa egunero hartu egin dira, egoerarik optimoenean hotel eta
egun bakoitzeko 120 prezio lortuz. Behin hotel eta egun bakoitzeko 120 datu inguru edukita
horiek laburbildu egin dira, kasu bakoitzeko prezio bakarra izateko. Helburu horrekin, lortutako
elementu guztien mediana kalkulatu da. Estatistiko honek muturreko balioen eragina
ezabatzen baitu eta, beraz, hasierako aurreprozesatze moduan balio dezake.

Pentsa daitekeen moduan Eustat erakundeko datu baseko hotel guztiak ez dira web
plataformetan agertu. Hala ere, Erkidegoko hotel eta pentsioen %80 inguruko kobertura lortu
egin da.

Behin bi iturrietako informazioa fusionatu eta gero ondoko pausuak jarraitu dira:

Outlier azterketa.
Balio galduen inputazioa.
Hotelen analisi espaziala.

A w NP

Bero mapa.

Egindako analisi guztiak R programazio lengoaian egin dira. Programazio lengoaia hau
estatistikaren munduan erabilia izateaz gain, azken urteetan machine learning munduan
indarra hartu du. R-n programatzeko Rstudio Garapen Ingurune Integratua (IDL ingelesez)
erabili da, duen kode editoreaz, debugging tresnez eta ikustarazte tresnez baliatzeko.
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5. Outlier azterketa

Lan egiteko erabiltzen diren datuak modu automatiko baten lortzen direnez hauek txarto
hartzeko aukera existitzen da (scraping-aren prozesuan arazoren bat egon delako, web
orrialdearen arazo batengatik...). Txarto hartutako balioak, txarto egonda ere, denboran hurbil
hartutako datuak bezalakoak badira etorkizuneko analisietan ez dute zertan eragin handia izan
behar. Bestalde, errore hauek muturreko balioak edo oso arraroak badira, etorkizunean eragin
negatiboa izan dezakete.

Scraping-a egin eta gero egun bakoitzerako lortutako datu guztien mediana kalkulatzen denez
prozesuan ateratako balio arraro asko jada desagertzen dira. Hala ere, honek ez ditu
muturreko balio guztiak ezabatzen eta azterketa sakonago bat egitea beharrezkoa egiten da:

Hotel price

Aug 2017 Sep 2017 Cher 2017 MNow 2017 Dec 2017 Jan 2018

Day

Balio arraroen artean hiru mota nagusi daudela esan daiteke:

1. Outlier: Datuen kopuru txiki bat, bata bestearengandik eta gehiengoaren multzotik
bananduta daudenak.

2. Anomalia: Datuen kopuru txiki bat, kategoriaduna normalean, bata bestearengandik
hurbil baina gehiengoaren multzotik urrun daudenak.

3. “Novelty”: Ezezaguna den kategoria berri bat osatzen duten puntuak.

Gure kasuan lehenengo bi motatako balioak eduki ditzakegu. Alde batetik, outlierrak aurreko
irudian ditugun puntua bezalakoak diren datuak izango dira. Hemen, “ezinezkoa” den balio
baten aurrean baikaude. Bestetik, anomaliak egun bereziak izango lirateke, zubiak, jai egunak,
asteburuak... Ondoko irudian ikusten den moduan, azaroaren 11-an hainbat hotelek balio
arraroak dituzte. Hala ere, fenomeno hau hainbat kasutan gertatzen da, ez da hotel bakarreko
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gauza.

|
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K
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5.1. Hotelak konparagarriak egiten

Hotel desberdinei irizpidea berdina aplikatzeko hauek eskala berdinean egotea beharrezkoa
da. Hau da, 5 izarreko hotel baten prezioa ez da inoiz izar bateko pentsio baten prezioarekin
konparagarria izango. Modu berean, Donostiako pentsioak, orokorrean, ez dituzte Gasteizeko
pentsioen prezio eremu berdinak. Ondorengo grafikoan 5 izarreko hotel baten eta pentsio
baten prezioak ikus daitezke.

Scaling hotel prices

1 price/ N

N R e A T

Aug 2017 Sep 2017 Oct 2017 Nowv 2017 Dec 2017 lan 2018

Karratu gorri batez markatutako balioa outlier bat dela badirudien arren bi hotelak batera
aztertzerakoan gerta daiteke puntu hau bost izarreko balioen artean ez nabarmentzea. Arazo
hori saihesteko hotelak eskala berdinera pasatu dira. Horretarako, hotelen prezioa aztertu
beharrean prezioen bariazioa aztertu da, hilabeteka. Hilabeteko balio minimoak oso
egonkorrak zirela ikusita, hilabete bakoitzeko minimoari 100 balioa esleitu zaio. Hori eginda,
beste balioei minimoarekiko duten igoerarekiko proportzionala den balioa esleitu zaie. Hau da,
hilabeteko minimoa 200€ bada eta hilabete berdinean 600€-ko balio bat badago, minioa duen
puntuari 100 balioa esleituko zaio eta 600 duenari 300. Hau eginda, lehen aztertutako hotel
berdinak aztertuz ondoko grafikoa edukiko genuke:

Scaling hotel prices

.U

d pric
1
3 :

Normalize
w
8

Wﬁwwwwﬁ i

Aug 2017 Now 2017 Jan 2018

Ikus daitekeen moduan, hasiera baten outlierra zela pentsatzen genuen puntua kasu honetan
argi eta garbi nabarmentzen da.

5.2. Grubbs-en metodoa
Grubbs-en testa outlier bakarra aurkitzen duen testa da. Honek aztertutako datuen maximoa
eta minimoa aztertzen ditu eta hauetako bat outlierra den esaten digu. Horretarako,
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aztertutako elementuen eta hauen batez bestekoaren arteko distantzia maximoa duen
elementua aztertzen du desbiderapen estandarra kontuan hartuz:
|Y;—¥|

G =maxi—q, n—

Test hau R softwar-aren outlier paketean eskuragarri dago grubbs.test() funtzioaren bitartez.
Funtzio honek aztertutako elementuen maximoa edo minimoa balio estremoak diren esaten
digu. Horretarako, 0 < p — balio <1 estadistiko bat bueltatzen digu. Balio hori, guk
finkatutako dugun muga batekin batera, elementu bat outlier-a den edo ez jakiteko balioko
digu.

5.3. Hotelak aztertu

Egindako outlier azterketan, lehenik eta behin hotelak bakarka aztertu dira. Konturatu puntu
honetan outlierrak diren baino puntu gehiago aterako direla, hemen anomaliak ere agertuko
baitira. Prozesu hau hilabeteka egin da, horrela, hile berri bateko datuak lortzerakoan ez dira
aurreko hilabeteko datuak beharko.

5.4. Egunak aztertu
Hotelak aztertzeaz gain, egunak ere aztertu dira. Hau eginda, egun bateko gertaera berezi
bategatik (festak, oporrak, ekitaldiak...) hotelek prezio igoera orokor bat izan badute puntu
horiek ez dira outlier moduan hartuko. Azterketa hau lurraldeka egin da, lurralde bakoitzak
bere jai propioak baititu.

5.5. Emaitzak bateratu

Azkenik, gure datuen outlier moduan aztertutako kasu bietan outlier moduan agertzen diren
puntuak bakarrik hartu dira. Beste modu batean esanda, balio bat outlierra izango da baldin
eta soilik baldin bere hotelaren balioen artean outlier-a bada eta bere egunean outlierra bada.

5.6. p-balioa

Bukatzeko, lehen komentatu den moduan grubbs-en testak p — balio bat bueltatzen du eta
muga bat definitu behar da non p < muga bada aztertutako puntua outleirra izango den.
Horretarako, ditugun datuen outleir-ak eskuz markatu dira eta p — balio desberdinen
konbinazioak (bat hotelen azterketarako eta beste bat egunen azterketarako) lortutako
emaitzak eskuz markatutako emaitzekin konparatu dira. Ondoko grafikoan lortutako balioen
konparazioa dago non puntu desberdinak p — balio bikote desberdin bat adierazten duten.
Lerro urdinak markatutako outlier-etatik aurkitu ez direnak dira, laranjak aldiz normalak diren
eta outlier moduan markatu diren puntuak dira eta berdeak, azken bi motako erroreen batura
da:
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Hau eginda, p — balio-aren muga definitzeko orduan ondo irizpidea jarraitu da:

1. Errore kopuru totala (marra berdea) minimizatzen dituzten p — balio-ak aztertu.

2. Outlier gehien aurkitzen dituen p — balio-ak aukeratu (marra urdina minimizatu).
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6. Balio galduen inputazioa

Outlierrak detektatu eta gero hauekin zer egingo den erabaki behar da. Gure kasuan balio
horiek ezabatu eta egun horretako datuak inputatzea erabaki da, balio galduekin batera.
Horretarako, R-k baliatzen duen imputeTS paketea erabili da. Pakete honek denbora serieen
inputaziorako hainbat metodo ditu: na.seasplit, na.seadec, na.interpolation, na.kalman... Gure
kasu partikularrean serieak aldizkakotasuna dutela esan daiteke, hau da, normalean 7 eguneko
patroiak ikus daitezke non ostiral eta larunbatetan prezioa gora doan..

Inputazio metodoa aukeratze irizpideak eta emaitzak azaldu baino lehen aldizkakotasuna dute
serieekin lan egiteko gomendatzen diren funtzio nagusiak ikusiko ditugu: na.seasplit,
na.seadec, na.kalma.

6.1 na.seasplit

Ikusiko dugun lehengo funtzio honetarako egin beharreko lehenengo pausua aztertuko den
seriearen aldizkakotasuna adieraztea da. Horretara, gure x hotel baten prezioaren serieari
denbora serie formatua, R-n, emango diogu: Xx<-t s(x, frequency=7). Hau egiterakoan
7 eguneko aldizkakotasuna dagoela adierazten dugu. Hau eginda, metodoak serie originaletik 7
serie desberdin aterako ditu (bat asteko egun bakoitzeko). Adibidez demagun hotel baten
prezio normalizatuen serie bat dugula non astelehenak laranjaz nabarmendu diren:

- A 4]
BRI

WU A
-
: 1

Aug 2017 Sep 2017 Oct 2017 Nov 2017 Dec 2017 Jan 2018

Orduan metodoak ondorengo argazkian ikus daitekeen seriearen moduko beste 7 aterako
lituzke:

0.8
0.6
0.4

0.2

35 40 45 50

Hau egin eta gero serie bakoitzari nahi den inputazio metodoa aplikatzen zaio, imputeTS
paketeko aukera posibleetatik: ARIMA, inerpolazioa, Basic Estructural Models...
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6.2 na.seadec

Aurreko kasuan gertatzen zen bezala, hemen ere gure seriea 7 eguneko aldizkakotasuna duela
adierazi beharko dugu. Hau egin ostean serieari aldizkakotasuna kentzen zaio geratzen den
seriea inputatzeko. Orduan, inputatutako serie sinpleari aldizkakotasuna gehituko litzaioke.
Ondorengo irudietan ikus daitekeen moduan:

Price

<
l
\

Week of the year

Hemen, ezkerrean hotel baten prezioaren eboluzioa ikus daiteke, hainbat balio galduekin.
Orduan, eskumako zatian ikusten den moduan seriearen aldizkakotasuna (serie laranja)
baztertuko litzateke. Hau eginda, geratzen den serieari (urdina) nahi den inputazio metodoa
aplikatuko litzaioke (ARIMA, inerpolazioa, Basic Estructural Models..) eta lortutako
inputatutako serieari aldizkakotasuna berriro gehituko litzaioke.

6.3 na.kalman

Funtzio honek aztertzen den seriearen modelizazioan oinarritzen da. Funtzioari seriearen
edozein eredu pasa lekioke, kasuaren beharren arabera, baina funtzioak berak ere baditu 2
modelizazio metodo integraturik: auto.arima eta StructTS. Funtzio honen oinarria kalmanen
filtroetan dago.

Kalmanen filtroak, Linear Quadratic Estimation (LQE) moduan ere ezagutzen direnak,
ezezagunak diren balioak estimatzeko denboran zehar hartutako balioak erabiltzen ditu.
Horretarako denbora leiho bakoitzeko bildura probabilitate banaketa bat estimatzen du. Eredu
hau Hidden Markov Models tekniken antzekoa dela esan daiteke, egoera espazioa jarraitua
izanda eta aldagaiak banaketa Gaussiarra edukiz.

6.4 Inputazio optimoaren aukeraketa

Inputazio metodo finala aukeratzeko garaian, outlierrekin jarraitutako antzeko prozesu bat
jarraitu da. Hemen, osoak eta outlier barik (150 inguru) zeuden serieak hartu dira eta ausaz 15-
20 puntu tartean kendu zaizkie. Ondoren, metodo desberdinak serie hauetan aplikatu eta
lortutako emaitzak jatorrizko serie osoekin konparatu dira. Serieen balio galduak gehienbat
asteburuetan pilatzen direla antzeman denez (ikusi hurrengo irudia), serie osoetatik
asteburuetako balioa baztertzeko probabilitatea handitu egin da.
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Inputatutako seriearen eta serie originalaren arteko aldea neurtzeko batez besteko errore
koadratikoa erabili da.

Prozesu hau 20 aldiz egin da ImputTS paketeko funtzio bakoitzeko eta gauza bera egin da
hotelen eguneko prezio minimoekin ere (prezio hauek egonkorragoak dira eta aldizkakotasuna
nabariagoa dute). Hurrengo argazkian aldi bakoitzean eta metodo bakoitzean lotutako errorea
ikus daiteke:

Testing methods with the Median

0.007 —— Split--LOCF

~—— Split-MA

—— Split--KALMAN

= Split--INTERPOLATION

~—— Split--INTERPOLATION--SPLINE
= Split--INTERPOLATION--STINE
~—— Decomposed--LOCF

0.006

MSE

W —— Decomposed--MA
- Decomposed--KALMAN
=~ Decomposed--INTERPOLATION
— —— —— Decomposed--INTERPOLATION--SPLINE
=~ Decomposed--INTERPOLATION--STINE

0.003 N =) = Kalman--StructTS

0.004

= Kalman--auto.arima
20 different tests

Hemen ikus daitekeen moduan errore minimoa dutenak na.seadec funtzioa MA,kalman,
interpolation eta stine-interpolation eta na.kalman StructTS ereduarekin dira:
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Testing methods with the Median

0.0032

Split

0.0031 - Split
- Split
- Split
0.003

- Split--

pu
C

Lo
-MA

~KALMAN
--INTERPOLATION
~-INTERPOLATION--SPLINE

~INTERPOLATION--STINE

F

— Split
Decomposed--LOCF

MSE

= Decomposed--MA

~——— Decomposed--KALMAN

~— Decomposed--INTERPOLATION
= Decomposed--INTERPOLATION
~— Decomposed--INTERPOLATION:
——— Kalman--StructTS

0.0029

0.0028 --SPLINE

--STINE
0.0027

- Kalman--auto.arima

10
20 different tests

20

Eta gauza bera gertatzen da prezio minimoak aztertzerakoan:

Testing methods with the Minimum

= Split--LOCF
Split--MA
--KALMAN
--INTERPOLATION
--INTERPOLATION--SPLINE
--INTERPOLATION--STINE
Decomposed--LOCF
=~ Decomposed--MA
~ Decomposed--KALMAN
~— Decomposed--INTERPOLATION
= Decomposed--INTERPOLATION--SPLINE
=~ Decomposed--INTERPOLATION--STINE
— Kalman--StructTS

—— Kalman--auto.arima

0.0034

— Split
0.0032 — Split
— Split

= Split

0.0028

0.0026

10
20 different tests

20

Datu guzti hauek kontuan hartuz, na.seadec funtzioa kalman filtroarekin erabiltzea erabaki da.
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7. Autokorrelazio espaziala

Izan bedi Q = {w;:i = 1,...,n} espazialki egituratutako multzoa (aztertzen ari garen hotelen
multzoa adibidez) orduan, autokorrelazioa espaziala ) maparen antolaketa eredua aztertzean
datza. Puntu batean aztertutako egituraren magnitudearen balioa erlatiboki altua (baxua)
bada, gure kasuan hotelen prezioa izango zena, eta bere inguruneko magnitudeen balioak ere
altuak (baxuak) badira, orduan autokorrelazioa positiboa (altua) izango genuke. Aldiz,
aztertutako kokapen zehatz batean magnitudearen balioa erlatiboki altua (baxua) bada eta
magnitude horren balio baxuz (altuz) inguratuta badago, autokorrelazio negatiboa (baxua)
dagoela esan daiteke. Aldagaiek beraien inguruko aldagaiekiko balio antzekoak edo
desberdinak hartzeari dependentzia espaziala deritzo eta antzekotasun edo desberdintasun
hori neurtu ahal izateko autokorrelazio espazialaren indizeak erabiltzen dira.

7.1 Oinarrizko definizioak

Korrelazio indize hauek kalkulatzeko orduan badaude beharrezkoak diren bi elementu: Pisuen
matrizea eta egitura matrizea. Pisuen matrizea, P = [pl-j], elementuen balioen menpekoa da,
matrize karratua da eta bere balioak absolutuan hartzen baditugu simetrikoa izango litzateke.
Bestalde, egitura matrizeak, A = [a;;], elementuek espazioan duten egitura adierazten du eta

simetrikoa da.

Egitura matrizea definitzeko modu asko daude, adibidez, elementuen arteko distantzia dij

. 1 - .
kontuan har daiteke a;; = ™ moduan definituz. Kasu honetan kontu handia izan behar da

ij
d;j = 0 denean. Egitura matrizeko elementuei ere 1 balioa eman ahal zaie ondoz ondoko
elementuak badira eta 0 kontrako kasuan. Hotelen kasuan, ondoz-ondokotasun kontzeptu hau
estrato, herri edota lurralde historiko berdinean egotea adieraz dezake. Bukatzeko, normalean

a;; osagaiari 0 balioa ematen zaio.

Behin matrize hauek definituta autokorrelazio indize bat ondoko itxura edukiko luke:

I'= AZZaupU
U

Korrelazio indizeak definitu baino lehen erabiltzen diren estatistiko espazial desberdinak
definituko dira. Hasteko, w; elementu bakoitzak A; pisu espaziala izango du, ondoko eran

Ai = Zaij.

J

definitzen dena:

Hauek jakinda multzoko pisu totala ere definitu daiteke:

Arot =2Ai =Zzaij-
7 T

Konturatua;; = 0 denean A, bikoitia izango dela, a;; = a;; baita. Behin elementu
bakoitzaren pisua eta pisu totala definituta, hauekin egokitutako media eta bariantza
definitzen dira. Gure kausan w; hotel bakoitzaren prezioa x; moduan adieraziko dugu.
Hasteko, egokitutako media ondoko eran definitzen da:
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1
ﬁ = 2 Aixi.
ATot 7

Media berri honen ezaugarri nagusia bere inguruan elementu gehien (gutxien) dituzten
elementuek balio finalean eragin handiagoa (txikiagoa) izango dutela da. Hotelen kasuan,
adibidez, Donostia moduko hiri baten hotelek pisu handiagoa izango dute Galdakaon egon
daitekeen hotel batekin konparatuz. Ohartu media honek ohikoak betetzen dituen
propietateak ere betetzen dituela:

1 1 1
A - =—ZA- = —— Apor¥s = 0.
ATotZ l(xl xA) ATot i iXi ATot TotXA

Egokitutako bariantza modu baliokide batean definitzen da:

1
S5 = ZAi(xi —%,)%
7

ATot

Mediaren kasuan gertatzen zen moduan, elementu asko dituzten inguruneetan dauden
elementuek eragin handiagoa izango dute isolatutako elementuekin konparatuz. Behin
estatistiko pare hau definituta, hurrengo pausu logikoa estandarizatutako aldagaiak definitzea
litzateke. Aldagai berri hauen egokitutako media 0 eta egokitutako bariantza 1 izango litzateke:
Xi— X

Zi = ———

L Sj

Hortaz aparte, hotel bat bere ingurunearen bitartez karakteriza daiteke. Horrela,
w;elementuaren ingurunea ondoko eran laburbildu daiteke:

1
yi = A—IZ ai]'Xj.
]

Modu honetan lortzen diren elementuek x; elementuen media mantentzen dute eta hauek
osatzen duten multzoa hasierako multzoaren leunketa baten modukoa izango litzateke.

7.2 Indize globalak
Behin oinarrizko kontzeptuak definituta korrelazio indizeak ikusteko ordua iritzi da. Lehen esan
bezala, indizeak normalean ondoko itxura dute:

= AZZ aijpij.
iJ

Ikusiko dugun lehen indizea Moran-ena da. Honek pisu moduan estandarizatutako elementuen
biderketak hartzen ditu, p;; = (X‘T_x)(x’s—_x) Gure kasuan alde espaziala aztertzen gaudenez

egokitutako media eta bariantza erabiliko ditugu, p;; = z;z;. Beraz, Moranen egokitutako

indizea ondokoa litzateke.
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-, 2. ZZ A
a;iZiZ; .
ATot LA Arot Sﬁ

Indize honek gero eta balioa altuago eduki orduan eta korrelazio altuagoa adieraziko du. Modu
berean, gero eta balio negatiboagoa hartzerakoa orduan eta korrelazioa baxuagoa izango du.

Beste indize bat Geary-ren indizea litzateke. Honek, pisu matrizeko elementu moduan
estandarizatutako elementuen kenketak ditu. Beraz, egokitutako Gearyren indizearen kasuan
pij = z; — zj edukiko genuke:

c* x})
2Am22 @z = 2) 2Am22

Geary-ren indizearen kasuan balio positiboak hartuko ditu. Hemen, gero eta zerotik hurbilago

egon orduan eta korrelazio altuagoa dagoela adieraziko da.Gainera, gero eta balio altuagoa
hartu orduan eta korrelazio negatiboagoa dagoela adieraziko da.

Hirugarren indizea Lebart-en indizea litzateke. Kasu honetan, egokitutako Lebarten indizea pisu

(xi=y)?
sz’

moduan elementuen eta hauen ingurunearen arteko kenketaren karratua, p;; =

hartuko luke:

2 2
Z z Zyl) z 4 yl)
ATot A ATot

Gearyren kasuan gertatzen den moduan, hemen ere indizea gero eta 0 baliotik hurbilago egon
orduan eta korrelazio positiboagoa egon da. Aldiz, gero eta balio altuagoa eduki orduan eta
korrelazio negatiboagoa adieraziko du.

Laugarren indizea [11] lanean definitutako 71, indizea da. Honek pisu matrizeko elementu
moduan elementuen ingurunearen eta egokitutako mediaren arteko kenketen karratuak

pij = (vi — X2)? ditu:

1 ZZaij(yi—ﬁ)z_ 1 2‘4'(%_@)2
Arot 5 Sﬁ Arot - ' Sﬁ .

Bukatzeko, aipatutako lan berdinean agertutako beste indize bat, 1, indizea, definituko da.

2 . .
Honen kasuan, p;; = (yl- - xj) elementuaren ingurunea beste elementuekin konparatzen da

kenketaren bitartez eta karratua kalkulatzen da:

2= ATMEZ

Azkeneko bi indize hauek ere 0 baliotik hurbil daudenean autokorrelazio positiboa adierazten

dute eta gero eta balio handiagoa izan orduan eta korrelazio negatiboagoa izango du.
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7.3 Indize lokalak

Indize globalek multzo osoaren korrelazio espaziala neurtzen duten arren, aztertutako
elementu bakoitzak korrelazioa espazial totalean duen eragina ere ikustea interesgarria
litzateke. Horretarako, korrelazio indize lokalak definitzen dira. Indize hauek Anselin [2]
proposatutako irizpidea jarraituz definitzen dira:

1. Indize lokalek, elementuek indize globalean duten eragina adierazten dute.
2. Elementu guztiei dagokien indize lokalen batura indize globalarekiko proportzionala
da.

Irizpide hori jarraituz aurreko atalean azaldutako indizeen zati lokalak defini daitezke:

1 Xi—=X A~ Xj—XA.
1. Moran: I} = oo aij( ‘SAA)(’S—A).

2
L 11 n xi—xj
2. Geary: CL' = EA_L'Zj:O Qij (T .

w

i\ 2
Lebart: L; = (%) .

A

8wy = (X))

b

C ok = Llyn Yim¥;
M2t M2y = g Zj=0%ij\ 75~ ) -

Hemengo indize lokal bakoitzak w; hotelak indize globalean duen eragina adierazten du.
Gainera, indize lokalen konbinazio linealetatik indize globalak lor daitezke. Demagun T indize
globala dela eta I; bere aldagai lokala dela, orduan:

= 1 ZAF
ATotL. b

Hau da, indize orokor guztiek elementu guztien indize lokalen baturarekiko proportzionalak
dira, bereziki, indize orokor guztiek elementu guztien indize lokalen batazbestekoak dira. Hori
dela eta, hasieran finkatutako irizpide guztiak betetzen direla baiezta daiteke eta, beraz, indize
lokalak ondo definituta daudela ere.

7.4. Indizeak hoteletan

Behin indizeak definituta eta hauek aplikatzen hasi baino lehen pare bat gauza konpontzea
faltako zen. Alde batetik, egitura matrizea definitu beharko litzateke. Bestetik, hotelen
prezioetan hauen kokapena ez-ezik kategoria ere eragin handia du. Hori dela eta, kategoriaren
eragina indargabetu beharko litzateke. Arazo hau kontuan hartzen ez bada egingo den
analisiak emaitza okerrak eman ditzake, adibidez, kategori baxuko hotelez inguratutako
kategoria altuko hotelak kategoriak duen prezioaren igoeraren eraginagatik nabarmentzea
gerta daiteke eta ez kokapenaren eraginagatik.

Kategoriaren eragina saihesteko asmoz hiru analisi desberdin jarraitu dira. Hauek hobeto
ulertzeko demagun ondorengo datuak ditugula:

58

Eustat



Hotela Kategoria Data Prezioa
1 H3 2039-08-19 75

1 H3 2039-11-15 56

2 H5 2039-08-19 500

2 H5 2039-11-15 300

3 P1 2039-08-19 30

3 P1 2039-11-15 15

4 H3 2039-08-19 90

4 H3 2039-11-15 60

4 H3 2039-07-15 75

Alde batetik, lehenengo konparazioan hotelen prezioak 0 eta 100 arteko balioetara pasatu dira
bere kategorian duten prezioaren arabera. Beste modu batean esanda, kategoria bateko
prezio maximoari 100 balioa eman zaio eta besteak modu proportzional batean 0-100 tartera

pasatu dira.

Hotela Kategoria Data Balioa_1
1 H3 2039-08-19 55

1 H3 2039-11-15 0

2 HS5 2039-08-19 100

2 H5 2039-11-15 0

3 P1 2039-08-19 100

3 P1 2039-11-15 0

4 H3 2039-08-19 100

4 H3 2039-11-15 11

4 H3 2039-07-15 55

Bestetik, hotelen azterketa kategoriaka egin da. Hau da, aztertzen den hotela bere kategoria
berdina duten hotelekin bakarrik konparatu da.

Hotela Kategoria Data Balioa_2
1 H3 2039-08-19 75

1 H3 2039-11-15 56

2 H5 2039-08-19 500

2 H5 2039-11-15 300

3 P1 2039-08-19 30

3 P1 2039-11-15 15

4 H3 2039-08-19 90

4 H3 2039-11-15 60

4 H3 2039-07-15 75

Azkenik, hotelen prezioa aztertu beharrean prezioen tendentzia aztertu da. Hemen hotel
bakoitza banaka aztertu da eta bere prezioak 0 eta 100 tartera pasatu dira. Kasu honetan,
hotelak bere prezio maximo historiko lortzen duen egunari 100 balioa, minimoa duen egunaria
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0 balio eta beste egunei balio proportzionalak esleitu zaizkie. Gainera, prezio konstantean

duten hotelei 50 balioa esleitu zaizkie.

Hotela Kategoria Data Balioa_3
1 H3 2039-08-19 100

1 H3 2039-11-15 0

2 H5 2039-08-19 100

2 H5 2039-11-15 0

3 P1 2039-08-19 100

3 P1 2039-11-15 0

4 H3 2039-08-19 100

4 H3 2039-11-15 0

4 H3 2039-07-15 50

Behin kategoriaren eragina minimizatuta egitura funtzioaren aukeraketaren ordua heldu da.
Hemen ere hiru kasu desberdin aztertu dira, guztietan a; = 0 izanik. Hasteko, w; hotela
aztertzerakoan a;; = 1 moduan hartu da baldin eta w; hotela hasierako hotelaren estrato
berdinean badago. Bigarren eta hirugarren kasuetarako hotelen arteko distantziak kalkulatu
dira. Horretarako R softwar-aren geosphere paketeko distHaversine() funtzioa erabili da.
Funtzio honek bi puntuen arteko distantzia neurtzen du, Lurraren kurbadura kontuan hartuz.
Bigarren kasuan a;; = 1 izango da baldin eta soilik baldin w; hotela w; hotelik, gehienez,
aurretik finkatutako r distantzia batera badago. Egindako azterketaren kasuan r = 3km eta
r = 5km distantziak erabili dira. Azkenik, hirugarren kasurako hotel guztien eragina aztertu
nahi izan da. Horretarako, a;; = dii]_ moduan definitu da non d;;-ren balioa w; a w; hotelen
arteko distantzia den. Horrela, w; hotel bakoitzaren azterketan beste hotel guztiak kontuan
hartuko dira, hurbilen daudenei pisu handiagoa emanez.

Ohartu erabiltzen diren indizeen arabera emaitza desberdinak lortuko direla. Geary-ren
indizeak, adibidez, aztertutako hotelaren prezioa beste prezioekin konparatuko ditu baina
n,indizeak, aldiz, aztertutako hotela ez du kontuan hartuko, aztertutako hotelaren ingurunea
eta hotelen multzoko bataz bestekoa konparatzen baititu. Hori dela eta, kontuan hartu diren
indizeetatik gure kasu partikularrerako erabilgarrienetarikoak zeintzuk diren ikustea egin den
lehengo gauza izan da.

Hasteko, Moran-en eta Geary-ren indizeak baliokideak direla froga daiteke [11] beraz, Moran-
ena baztertzea erabaki da, balio positiboekin bakarrik lan egiteko. Gainera, egindako
proiektuaren helburua hotelen prezioa aztertzea denez 1, eta n, ez dira azterketan sartuko.
Hauek ez dute aztertzen den hotelaren prezioa kontuan hartzen, honen ingurunekoak baizik .

Hau guztia kontuan hartuz geratzen diren Geary-ren eta Lebart-en indizeakin lortutako
emaitzak aztertu dira, aurretik azaldutako lau egitura matrize mota desberdinekin.
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8. Bero mapa

Coimaps A

Euscac h(D
A Ontza FYEY
Prezio minimoa: Bizkaia kostaldea

459.00

Prezio maximoa: Donosti

84.02
Batez besteko prezioa

8.1. Erabilitako software-a

Bero mapa garatzeko R software-a erabili da. Hemen, shiny paketea erabiliz aplikazio grafiko
bat garatu da non, besteak beste, leaflet eta leaflet.extras paketeen laguntzaz mapa
interaktibo bat garatu den.

8.2. Bistaratzen diren datuak

Garatutako bero mapa ditugun hotelen prezioen informazioa modu desberdinean erakusten
da. Alde batetik, prezio hutsen bero mapa, bestetik, prezioen tendentzia eta, bukatzeko,
autokorrelazio espazialaren mapa ikus daiteke. Gainera, zoomaren arabera hotelen balioa
edota aztertzen den zonaldearen balioa adieraziko du.

8.2.1. Prezioen bero mapa

Mapa hau sinpleena da eta, suposa daitekeen moduan, hotelen prezioaren eboluzioa
erakusten du denboran zehar. Prezioa gero eta altuagoa denean gero eta kolore gorriagoa
izango du. gero eta prezio baxuagoa denean, aldiz, urdinagoa. Gorri intentsitate maximoa
aztertzen den hotelaren edo zonaldearen balioa erabiltzaileak finkatzen duen balio baten
berdina edo altuago denean gertatuko da.

2019-08-20

fa
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8.2.2. Prezioen tendentzia

Azaldutako lehenengo modalitatearen arazo nagusiena prezioen eboluzioa bistaratzea kasu
batzuetan zaila dela da. Adibidez, Euskal Autonomi Erkidegoari dagokionez, Donostia aldeko
prezioa Gasteizkoak baino altuagoak izango dira ia beti eta, beraz, hauek kasu askotan gorri
intentsitate handia izango dute. Hori saihesteko asmoz, bigarren bistaratze modalitate bat
garatu da. Hemen, hotelen prezioa azaldu beharrean prezioen tendentzia ikusten da. Hotel
bakoitza banaka aztertu ondoren honen prezioa 0-100 tartera pasatu da. Hau eginda, prezioen
eboluzio orokorra ikus daiteke. Adibidez, udan edo aste santuan hotelek prezio igoerak
dituztela ikus daiteke edota Irailaren erdialdera jaisten hasten direla era.

2017-08-20 (Summer) 2017-09-20
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8.2.3. Korrelazio espaziala

Bukatzeko korrelazio espazialeko indizeak ematen diguten informazioa ere bistaratu daiteke.
Ikusi dugun moduan, autokorrelazioak, aztertzen ditugun datuak beraien artean antzekoak
diren edo nabarmentzen den baten-bat dagoen adierazten digu. Ohartu kasu honetan
detailera joan behar dela informazioa lortzeko zeren eta, orokorrean, Euskal Autonomi
Erkidegoko hotel guztiak bere inguruko hotelen antzekoak baitira. Adibidez, hurrengo
argazkietan ikus daitekeen moduan, azaroaren 3-an zoom urrun batetik nabarmentzen den
hotelik ez dagoela pentsa daiteke, hala ere, Donostialdean zoom-a egiterakoan alde zaharrean
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nabarmentzen den pentsio bat dagoela ikus daiteke. Kasu honetan, gaua 360 eurora dago bere
inguruko pentsioek 50-100 tarteko prezioa dutelarik.

2018-11-03 :
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8.3.Funtzionalitate gehigarriak
Aplikazioari informazio gehigarria gehitzeko asmoz bero mapari funtzionalitate gehigarri
batzuk gehitu zaizkio.

8.3.1. Egunaren datu orokorrak

31.00 459.00

Prezio minimoa: Bizkaia kostaldea { Prezio maximoa: Donosti

Aplikazioa zabaltzerakoan bistara datorren lehenengo gauza maparen gainean agertzen den
kutxa multzoa da. Kutxa hauetan bistaratzen den egunaren datu orokor batzuk ikus daitezke:
prezio minimoa, batez besteko prezioa eta prezio maximoa. Kutxa hauek kolorez aldatuko dira
erakusten duten balioen arabera. Gogoratu bero maparen gorri intentsitate maximoa
markatzen duen balioa erabiltzaileek aukeratzen dutela. Balio horren arabera ere kutxen
koloreak hautatuko dira. Balioa maximoa baino altuagoa edo berdina bada kutxa gorria izango.
Bestalde, balio maximoa eta hauen erdiaren arteko balioak baditu, kutxa laranja izango da.
Bukatzeko, balio honen erdia baino baxuagoa bada, kutxa berdea izango da.
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4.3.2. Mapa kontrolatzeko menua
Peesimoos N

sJEuscac hOntza FEIN 84.02 459.00
y Prezio minimoa: Bizkaia kostaldea Batez besteko prezioa Prezio maximoa: Donosti

Aplikazioak ere badu atal bat mapa modu interaktiboan kontrolatzeko. Hasteko, play eta stop
botoien bitartez grafikoari mugimendua eman ahal zaio. Mapa mugitzen hasterakoan,
maparen egoera eguneratzen den ahala kutxetako balioak ere berristen joango dira.

Honen azpian Hotelak eta Estratoak botoiak ditugu. Hauek, suposa daitekeen moduan, hotelen

eta estratoen informazio gehigarria emango dute.

Hotelak botoiari dagokienez, sakatzerakoan hotel bakoitzaren gainean puntu bat agertuko da
honen informazioa emanez. Hurrengo argazkian ikus daitekeen moduan puntuak kolore
desberdinekoak izango dira hotelaren kategoriaren arabera. Adibidez, pentsioak kolore morea
izango dute, hiru izarreko hotelak urdin argia eta lau edo bost izarrekoak gorria. Gainera, sagua
puntuen gainetik pasatzerakoan hotelaren informazioa azalduko da. Hemen, besteak beste
hotelaren izena,prezioa, kategoria, probintzia eta logela kopurua adieraziko dira.

(SEuscac hOntza PN 84.02 459.00
o Prezio minimoa: Bizkaia kostaldea Batez besteko prezioa Prezio maximoa: Donosti
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Bestalde, Estratoak botoia sakatzerakoan erkidegoko estrato desberdinak banatzen dituzten
mugak bistaratuko dira. Hauetan klik egiterakoan fitxa txiki bat azalduko da aztertzen den
eguneko informazioarekin: estratoaren izenak, hotel kopurua eta bataz besteko prezioa.

(lEucac hOntza FIPN 118.04 775.00
Prezio minimoa: Bilbo Batez besteko prezioa Prezio maximoa: Donosti

Bukatzeko beste lau kutxa daudela ikus daitezke: data, mapa mota, kategoriak eta intentsitate
maximoa. Datak aztertzen den eguna eskuz aldatzeko ahalmena ematen du. Mapa mota
atalak, aldiz, ditugun bistaratze aukera desberdinak aukeratzen uzten du, bai bero mapa, bai
tendentziaren mapa eta baita korrelazio espazialarena ere. Modalitate gehigarri moduan mapa
hutsa ikustea ere posiblea izango da.

Prezioen mapa v

-

.

Gainera, Kategoriak atalak hotelak kategoriaka filtratzeko aukera ematen du, erabiltzaileari
interesatzen zaionak bakarrik bistaratzeko. Azkenik, Intentsitate maximoa atalak gorri

intentsitate maximoa finkatzen duen balioa aukeratzeko balio du.
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