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Aurkezpena

Azken garaiotan big data gizartearen arlo guztietara zabaldu da. Halaber, es-
tatistika ofizialean, non erronka bat den bere erabilera datu iturri berri bat bezala.
Estatistikako institutuetan hainbat proiektu pilotu ari dira egiten big dataren on-
dorioei heltzeko produkzio estatistikoaren alderdi guztietan.

Eustatek 2016an antolatu zuen Nazioarteko Estatistika Mintegiaren XXIX. edi-
zioa “Big data for Official Statistics” izenaren pean, zeina Peter Struijsek eman
baitzuen, Big Dataren programako koordinatzailea Statistics Netherlands (SN) ize-
nekoan eta Big Dataren taldearen koordinatzailea Europar Batasuneko ESSnet (Eu-
ropean Statistical System network) izenekoan.

Argitalpen honek ezagutarazi nahi du arlo honetan eginiko ikerketa lana Eusta-
ten formakuntzako eta ikerkuntzako beketariko baten eskutik. Dokumentu honek
bi atal ditu. Lehenbizikoan errepaso bat egiten zaie ikaskuntza automatikoko me-
todo batzuei big datan erabilgarriak eta bigarrenean heltzen zaio Euskal AEko hotel
establezimenduen sailkapenaren ikertzeari, egina bere prezio serietatik, weba eskra-
peatuz lortuak.

Vitoria-Gasteizen, 2019ko martxoan

Josu Iradi Arrieta

EUSTATeko Zuzendari Nagusia
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Atarikoa

Euskal Estatistika Erakundeak (Eustat) 2017. urtean estatistika eta matema-
tika metodologietan prestatzeko eta ikertzeko emandako bekari esker, Machine
Learning-en inguruan egin den lanaren emaitza da Koaderno Tekniko honetan
bildutakoa.

Helburu nagusia, egungo datu iturri ezberdinetatik jasotzen den informazioaren
trataerarako metodologiak aztertzea eta barneratzea da, orain arte erabilitako datu
eta estatistikak alde batera utzi gabe. Horren bidez, emaitza aberasgarriagoak
eskaintzeko asmoarekin.

Koaderno Tekniko honetarako, turismoaren inguruko informazio gehiago izateko,
web plataforma batera joan da. Enpresarekin kontaktuan jartzen saiatu ondoren
eta erantzunik jasotzen ez zela ikusita, beraien orrialdeari web scraping-a egiten
hasi zen, betiere enpresari abisua emanik. Datu horiek lortzen joan ahala (hasiera
2017 uztailean izan zelarik), Eustat-eko Establezimendu Turistiko Hartzaileen
Inkestako datuekin lotzen joan ziren hotel eta pentsioak identifikatuz.

Datuen fusioa egindakoan, bekaren helburu nagusietako bat establezimendu
horien sailkapen desberdinak egitea izan da, hau da, prezioen serie denboralen clus-
tering ezberdinak. Lortutako emaitzak, European Survey Research Association-ek
(ESRA) Bartzelonan antolatutako BigSurv18 konferentzian aurkeztu ziren poster
baten bidez.

Hori dela eta, koaderno honen egitura 2 atal nagusitan banatzen da. Alde
batetik, Machine Learning-en inguruko teoria eta metodo ezberdinak azaltzen dira
1. atalean. Bestetik, 2. atalean hotelen clustering-en inguruan egin den lana
aurkezten da, lortutako emaitzak azalduz.

Halaber, atariko hau baliatu nahi dut bekako 2 urte hauetan laguntzen ibili
diren Eustateko Metodologia, Berrikuntza eta I+Gko Arloa osatzen duten guztiei:
Anjeles Iztueta, Jorge Aramendi, Elena Goni, Inmaculada Gil eta Marina Ayes-
tarán. Eskerrak eman nahi dizkiet baita Eustateko lankideei, horren giro hona
sortzeagatik eta Ander Juarez bekadunari niri aguantatu izanagatik.

Gako-hitzak: machine learning, clustering.
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Sarrera

Lehenengo atalean, Machine Learning-eko metodo ezberdinak azalduko
dira era labur eta sinple batean. Machine Learning-en ideia nagusia, jasotako
datuekin ahalik eta eredu egokienak sortzea izaten da orokorrean. Eredu horiek
sortzerako orduan ordea, hainbat aukera ezberdin izaten dira, parametro ezezagun
ugari agertzen dira eta horiei balio jakin batzuk eman behar izaten zaizkie. Hain
zuzen ere, Machine Learning-en bidez, ordenagailuak ahalik eta era automatikoe-
nean parametro egokienak ikastea bilatzen da (hortik datorkio hain zuzen ere izena).

Lanean aritu beharreko datuen arabera, 2 bloke nagusi ezberdintzen dira: Su-
pervised Learning (1. kapitulua) eta Unsupervised Learning (2. kapitulua).
Lehenengoaren kasuan, datuek etiketa bat izango dute eta helburua datuei etiketa
era egokian jartzen dion eredua sortzea da. Bigarrenean aldiz, datuek ez dute
inongo etiketarik eta beraien barne egitura lortzea da helburua.

Sequential Data-n (3. kapitulua), datu egitura berezi bat aztertzen da,
ordenak garrantzia duen datuena hain zuzen ere. Datu mota hauek serie denbo-
ralekin dute zerikusia askotan eta adibide tipikoak burtsarena eta eguraldiarena
dira. Bertan, Markov-en kateak aztertuko dira, definizio eta aplikazio batzuk
aurkeztuz.

Gaur egunean gero eta indar handiagoa hartzen ari diren Sare Neuronal
Artifizial-ek ere beraien kapitulu propioa dute (4. kapitulua). Sare horiek,
Supervised Learning-eko eta Unsupervised Learning-eko ereduak sortzeko balio
dute, baita beste milaka aplikazio ezberdinetarako ere. Orain dela urte dezente
sortu baziren ere, konputazio prozesuak azkartu diren azken urteotan bihurtu dira
bereziki erabilgarri.

Atal honetako azken kapitulua aldiz (5. kapitulua), Ensemble Methods-i
dagokio. Metodo horiek, eredu sinple ezberdin asko sortzen dituzte gero horiek
konbinatzeko eta horrela eredu sendoago bat sortzeko. Planteamendua erraza
eta sinplea badirudi ere, egitura konplexuak era efizienteago batean azaltzeko oso
erabilgarriak dira.

Amaitzeko, Machine Learning-ean murgiltzea nahi duen irakurleari, gaur egun
R edo/eta Python programazio-lengoaiak erabiltzea gomendatzen zaio. Biak baitira
software libreak, funtzio eta pakete sorta ikaragarri handia eskaintzen dute eta atze-
tik duten komunitate erraldoiek oso eguneratuta mantentzen dituzte 2 programazio-
lengoaiak.



Kapitulua 1

Supervised Learning

Lehenengo kapitulu honetako metodoak bi talde nagusitan banatzen dira: erregre-
sioa eta sailkapena. Bi kasu horietan, datuak etiketaturik egon beharko dira, lehe-
nengo kasuan etiketa hori jarraitua izango da eta bigarren kasuan berriz diskretua
eta finitua.

Adibide bezala, hurrengo 2 taulak daude: bi tauletako datuak berdinak dira eta
bietan datuak etiketaturik daude (azken zutabea da etiketa). Hala ere, lehenengo
kasuan jarraitua da (Prezioa) eta bigarrenean diskretua eta finitua (Alokatzen/Sal-
gai).

m2 Solairua Kostaldean Prezioa
110 4 Bai 400.000
80 1 Ez 190.000
150 2 Ez 330.000
. . . . . . . . . . . .
70 5 Bai 390.000

Taula 1.1

m2 Solairua Kostaldean Alokatzen/Salgai
110 4 Bai Alokatzen
80 1 Ez Salgai
150 2 Ez Salgai
. . . . . . . . . . . .
70 5 Bai Alokatzen

Taula 1.2

Bi kasuetan bilatuko den helburua eredu bat sortzea izango da, datu berriak
sartzerakoan etiketa egokia jartzeko gai dena. Tauletako adibideei begiratuz gero,
lehenengo kasuan datuen aldagai ezberdinekin prezioa ondo estimatzea nahikoa da
eta bigarrenean aldiz, sarrerako datuekin pisua salgai edo alokatzen dagoen aurre-
saten saiatzea.
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1.1. ERREGRESIOA 9

Kapitulu honetan zehar, eredu horiek sortzeko metodo ezberdinak azaldu eta
aztertuko dira, baita eredu horien kalitatea testatzeko erabiltzen den metodologia
ere 1.3 azpi-kapituluan.

1.1 Erregresioa

Kapitulu honen sarreran esan bezala, erregresioan, datuetan 2 aldagai mota izango
dira: X aldagai independenteak eta Y aldagai dependentea (sarreran etiketa deitu
dena). Aldagai independenteko datuak kuantitatiboak edo kualitatiboak izan
daitezke eta aldagai dependentea berriz kuantitatiboa (erregresio logistikoan, al-
dagai dependentea kualitatiboa da, baina erregresio logistikoa sailkapen metodo bat
kontsideratzen da). Aldagai moten arabera, erregresioa egiteko modua zerbait alda-
tuko da, baina helburu nagusia Y aldagai dependentea X aldagai independentearen
bidez adieraztea izango da, hau da:

Y ∼ f(X,β)

Horretarako, f funtzioa eta β parametroa bilatu beharko dira Y ahalik eta ho-
bekien adierazteko X-ren bitartez. Praktikan, f funtzioa zehaztea ez da lan bidera-
garria izaten eta horregatik oinarrizko funtzioetara jotzen da, besteak beste funtzio
linealetara (ondorengo atalean aztertuko dena sakonago).

Sortutako ereduetan, beti emango da ε errore bat eta hori minimizatzen saiatu
behar izaten da orokorrean. Behin f funtzioa definiturik izanez gero, honako adie-
razpena lortuko da:

Y = f(X,β) + ε

eta egin beharreko lana, β parametroaren balioak lortzea da, ε errorea ahalik eta
txikiena izateko.

Errorea =
n∑
i=1

ε2i (1.1)

1.1.1 Erregresio lineala

Erregresio linealaren bidez sortzen baldin bada eredua, Y aldagai dependentea n
aldagai independenteren (X1, . . . , Xn) konbinazio lineal bezala adierazten da:

Y ∼ β0 +
n∑
i=1

Xiβi : β0, β1, . . . , βn ∈ R (1.2)

Kapitulu honen sarrerako adibidearekin jarraituz, aldagai independenteak 3 dira:
X1 ≡ m2, X2 ≡ Solairua eta X3 ≡ Kostaldean. Ondorioz, eredua sortzeko kalkulatu
beharreko parametroak β0, β1, . . . , βn ∈ R balioak dira.

Eredu lineal hauek, sor daitezkeen eredu sinpleenetarikoenak dira, baina hala
ere konputazio garaiaren aurretik garatutako metodo ugari daude eta datuak era
intuitibo eta erraz batean adierazteko balio dute. Gaur egungo estatistiketan ere
pisu handia dute eredu probabilistikoak sortzeko garaian.
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(1.2) ekuazioko problema ebazteko (β0, β1, . . . , βn ∈ R balioak lortzeko) era eta
metodo ezberdinak daude. Kasu gehienetan, X aldagai independenteak eta Y alda-
gai dependenteei baldintza batzuk betetzea eskatzen zaie, baita sortzen den erroreari
ere. Koaderno honetan, ez da sakonduko erregresio linealaren atzean dauden esta-
tistiketan, baina interesaturik dagoen irakurleak liburu asko aurki ditzake (baita
hainbat eta hainbat kode eta pakete R bezalako programazio-lengoaietan) estatis-
tika eta erregresio linealaren inguruan, besteak beste [10], [3] edota [5] liburuak
erabili daitezke erreferentzia bezala.

(1.2) problema era egokian ebatziz gero, Irudia 1.1-ko emaitza batera hel daiteke.

Irudia 1.1: Erregresio linealeko adibide bat. x aldagai independenteak [0, 10] tartean
hartzen ditu balioak eta y aldagai dependenteak [0, 3] tartean. Lortzen den eredua honakoa
da: y ∼ 0.3 + 0.225x. Irudian azter daitekeen bezala, sortutako ereduaren eta datuen
artean errore desberdinak agertzen dira. Errore horiek (ε) sarritan datuek duten zarataren
ondorio izaten dira eta kasuaren arabera onargarriak izango dira edo ez.

Errorea

Irudia 1.1 ikusten bada, argi ikusten da lortzen den eredua ez dela zehatza,
erroreak sortzen dira. Kasu horretan, erroreak beti emango dira ezin delako datu
multzoa era lineal baten adierazi. Hala ere, begi bistaz esan daiteke ereduak de-
zente ondo adierazten duela datu multzoaren joera. Horregatik, erregresio linealeko
helburua errore hori txikitzen duen funtzio lineala lortzea izango da, hau da, (1.2)
ekuazioko β0 eta βi egokiak aukeratzea.

Esan bezala, erregresio linealaren bidez sortzen diren ereduak, asko landutako
teoria dute atzetik, baina horiek aplikatzeko, datuek hipotesi batzuk bete behar di-
tuzte: X aldagai independenteen independentzia lineala, ε erroreak normalitatearen
hipotesia onartu behar du (ε ∼ N(0, σ2I)), etab.
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Eredu lineal konplexuagoak

Azpi-kapitulu honen hasieran ikusi den (1.2) ereduarekin, Y aldagai dependen-
tearen hurbilketa konplexuago eta hobeak egin daitezkeX aldagaia eraldatuz eta me-
todo berdina erabiliz. Demagun Irudia 1.2-ko datu multzoa jaso dela. Argi ikusten
denez lehenengo irudian, y ∼ β0+β1x ez da eredurik onena datu multzo hori adieraz-
teko. 3. mailako polinomio bat hartzen baldin bada berriz, y ∼ β0+β1x+β2x

2+β3x
3,

ereduak datuen joera askoz egokiago adierazten du.

Irudia 1.2: Ezkerreko grafikoan, y ∼ β0 + β1x erako eredu lineal sinple bat sortu da eta
eskuineko grafikoan berriz y ∼ β0 +β1x+β2x

2 +β3x
3 erako eredu konplexuago bat. Azter

daitekeenez, bigarren ereduak era egokiago batean azaltzen du datuen joera.

Pentsa daiteke x aldagaian berretzaileak sartzean linealtasuna galtzen ari dela,
baina ez da egia, linealtasuna β aldagaiarekiko baita.

Y ∼ X · β

x x2 x3 y
-2.5 6.25 -15.625 -21.5
-2 4 -8 -5
-1 1 -1 0.5
. . . . . . . . . . . .
2.5 6.25 15.625 21

Taula 1.3: Adibide honetan, sarrerako datu originalak zutabe grisak dira, hau da, x
eta y. Hala ere, taulara beste bi aldagai gehitu dira x aldagaia eraldatuz (berreketen
bidez). Era honetan, X = x hasierako aldagai independentea X ′ = (x, x2, x3) aldagai
independenteetara aldatu da eredu konplexuago bat eratzeko asmoarekin.

X eraldatzen den arren, β-rekiko ereduak lineala izaten jarraituko du. Hori
horrela izanik, X aldagai independentean hobekien etor daitezkeen eraldaketak egin



12 KAPITULUA 1. SUPERVISED LEARNING

daitezke (lnx, sinx, tanx . . .), betiere linealki independenteak baldin badira (ikusi
Taula 1.3-ko adibidea).

Erregularizazioa

Supervised Machine Learning-en, ez dira datu guztiak erabiltzen erregresiorako,
datuen ehuneko haundi bat hartzen da eredua sortzeko eta gainontzeko datuak ere-
duaren kalitatea edo zehaztasuna neurtzeko erabiltzen dira (Ikusi 1.3 azpi-kapitulua).
Horren ondorioz, eredua sortzerako orduan, ez da bilatzen datuak zehatz-mehatz
azaltzea, baizik eta egitura orokorra barneratzea, eta hori erregularizazioaren
bidez egin daiteke. Horretarako, metodo desberdinak daude1, baina erabilienak,
β parametroaren balioei mugak jartzen dizkienak dira, balio altuak penalizatuz.
Adibidez, Ridge Regression metodoan, muga horiek distantzia euklidearraren bidez
penalizatzen dira eta ondorioz, minimizatzea nahi den balioa honakoa da:

n∑
i=1

ε2i + λ

n∑
i=0

β2
i : λ > 0 (1.3)

λ parametroa aukeratzeko, balio desberdinekin probatzen da. Probatzen den
balio bakoitzeko (1.3) balioa minimizatzen duten βi balioak aukeratzen dira eta on-
doren, lortutako emaitzak eta eredua testatzen dira. Ereduak testatzeko erabiltzen
diren metodoak 1.3 azpi-kapituluan azaltzen dira.

Erregularizazioaren eragina ikusteko, Irudia 1.3 azter daiteke.

Irudia 1.3: Guruzte berdeak, sarrerako 9 datuak dira eta lerro urdina 8. mailako poli-
nomioaren bitartez lorturiko eredua. Bertan, (1.1)-n ikusitako errorea 0 baliokoa izango
da, baina ez du datuen egitura era egokian azaltzen. λ parametro egokia erabiliz gero,
laranjaz marraztutako eredu lineal sinplea lortu daiteke, desiragarriagoa dena.

1Metodo horiek zehatzago ikus daitezke [15] liburuko 3.4 atalean.
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Erregularizazioaren helburua, eredua datuei gehiegi ez doitzea da (kasu horietan
overfitting-a eman dela esaten da) eta horretarako eredu konplexuak zigortzen
ditu, sinpletasunari pisu handiagoa emanez.

1.2 Sailkapen metodoak

Erregresioa aztertu ondoren, sailkapen metodoekin jarraituko da. Sarrerako datuak
X espazio baten egongo dira eta datu bakoitza klase edo etiketa bakar batera eslei-
tuta egongo da. Klase horiek adierazteko, Y espazio diskretua edo kualitatiboa
erabiliko da, hau da, Y espazioa K klasez osaturik badago, honelako itxura izango
du:

Y = {1, 2, . . . K}
Helburua, f sailkapen funtzio bat lortzea izango da, X espazioko edozein ele-

menturi klase bat esleitzen diona era egoki batean. Irudia 1.4 aztertu ezkero, ber-
tako sarrerako datuak marraztuta dauden puntuak dira. X = R2 planoa da eta
Y = {0, 1} edo Y = {urdina, laranja}, hau da, 2 klase ezberdin daude. 2 klase
bakarrik dauden sailkapenei, sailkapen bitar edo binario deitzen zaie eta 2 baino
gehiago dutenei klase anitzeko sailkapena.

Irudia 1.4: Sailkapen metodo baten adibidea. Puntu laranjak eta urdinak, sarrerako
datuak dira, bakoitza bere etiketa edo klasearekin. Lerro urdina bestalde, sailkatzeko
sortu den eredua da: horren gainetik dauden puntuak klase batera esleituz eta behealdean
daudenak bestera.

Irudia 1.4 agertzen den lerro urdina, lortzea nahi den f sailkapen funtzioa da.
Erabiltzen den metodoaren arabera, sailkapen funtzio desberdinak lortuko dira eta
ondorioz emaitzak ere desberdinak izango dira. Behin f lortzean, X espazioko puntu
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bakoitza klase bati esleituta egongo da. Irudia 1.4-n, urdinez margotutako eremua,
klase bati lotuta dago eta laranjaz margotutakoa besteari.

1.2.1 k-Nearest Neighbors Classifier

Sailkapen metodo honetan, X espazioko elementuen arteko distantzia erabiltzen da.
X espazioaren sailkapena egiteko, x ∈ X bakoitzari, gertuen duen edo distantzia
txikienera duen elementuaren klase berdina atxikitzen zaio, Irudia 1.6-n ikusten
den bezala. Kasu horretan, 1-NN sailkapena egiten da, hau da, distantzia txikienera
duen puntuaren klasea bakarrik hartzen da kontutan. Garbi izan behar da distantzia
laburrena beti sarrerako datuekiko bilatu behar dela.

Irudia 1.5: Sarrerako datuen sailkapen bitar bat

Irudia 1.6: x elementuaren klasea, distantzia txikienera dagoen elementuaren klase berdina
izango da (1-NN kasuan), kasu honetan x klase urdinean sailkatuko da.

Halere, kasu hori orokortu egin daiteke. x elementutik distantzia txikienera
dagoen elementua bakarrik hartu beharrean kontutan, k elementu gertukoenak har
daitezke. Ondoren, elementu horien artean gehien errepikatzen den klasea zein den
zehaztu eta klase hori esleitu x elementuari. Kasu horri k-NN sailkapena deritzo.

k balioa aukeratzen
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Irudia 1.7: Ezkerreko irudian sarrerako datu originalak agertzen dira (3 klase daudelarik),
erdikoan 1-NN sailkapena egin ondoren lortzen den sailkapena eta eskuinekoan 5-NN-ren
bidez lortutakoa. Eskuinean agertzen diren gune grisak, gehien errepikatzen diren 2 klase
daudelako da.

Orokorrean, k-NN sailkapen metodoan, k txikia denean errorea txikiagoa izaten
da eta aldiz k handia denean, sailkapen eremua leunagoa eta egonkorragoa izaten da
(horren adibide da Irudia 1.7). k egokia hautatzeko, 1.3 azpi-kapituluko teknikak
erabiltzen dira, eredu ezberdinak sortuz k ezberdinetarako eta ondoren emaitzak
testatuz. k-ren balioaren aukeraketa aurreko ataleko erregularizazio bezala uler
daiteke: k-ren balio txikietarako overfitting-a eman daiteke.

Abantailak eta Desabantailak

Aurrerago esan bezala, metodo hau ulertzeko eta inplementatzeko sinplea eta
erraza da, definitu beharreko gauza bakarrenetarikoa, erabili nahi den distantzia da.
Hala ere, desabantaila bezala, sarrerako datu multzoa oso handia izanez gero era-
biltzen den algoritmoa kostu oso handikoa izango dela da, izan ere, k-NN metodoan
puntu guztiekiko distantzia kalkulatu behar da.

1.2.2 Decision Tree Classifier

Decision Trees metodoa, sailkapenerako naiz erregresiorako erabili daitekeen
metodoa da, hala ere atal honetan sailkapenerako erabiltzen den zatia ikusiko da.
Metodo hau zatiketa sisteman oinarritzen da eta ahalik eta intuitiboen egiteko,
adibide batekin hasiko da.

Irudia 1.8 aztertzen bada, 4 klaseko datu multzo bat ageri da. Bertan, 2 di-
mentsio daude, X1 eta X2, eta sailkatzeko erabili den bidea eskuineko zuhaitzean
erakusten da. Lehenik, X1 ardatzean t1 puntua lortu eta puntu horretatik eskuinera
dauden puntuak A taldean batu dira (puntu horiak). Ondoren, X2 ardatzean t2
puntua lortu eta puntu horretatik behera dauden puntuak B taldean sailkatu dira
(puntu gorriak). Azkenik, X1 ardatzean t3 puntua lortu eta C eta D taldeak sortu
dira (puntu berdeak eta urdinak hurrenez hurren).
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Irudia 1.8: Ezkerreko irudian, sarrerako 21 datuak 4 klasetan sailkatuta daude. Eskuineko
irudian, Decision Tree metodoa aplikatu eta gero lortzen den sailkapena agertzen da.

Abantailak 2

• Erraza eta sinplea ulertzeko eta interpretatzeko.

• Aldagai kuantitatibo eta kualitatiboekin lan egin dezake eta ez du datuen
preprozesaketa sakonik eskatzen.

• Datu askorekin lan egiteko gai den metodoa da.

Desabantailak

• Decision tree algoritmoak ezegonkorrak izan daitezke: sarrerako datuen alda-
keta txikiak, irteerako emaitza oso ezberdinak eman ditzake.

• Decision tree optimo global bat lortzea, NP-complete3 [11] problema bat da
eta arazo konputazional horri aurre egiteko, ensemble methods-ak erabiltzen
dira (5. kapituluan aurki daiteke informazio gehiago).

• Metodoaren sinpletasunak, kontzeptu zailagoak azaltzeko orduan arazoak
ematen ditu: XOR/ALA ate logikoarekin, multiplexadoreekin...

Algoritmoaren ideia

Algoritmoaren ideia, aldagaietan sailkapen errorea txikitzen duen puntua aur-
kitzea da. Irudia 1.8-n adibidez, algoritmoak X1 eta X2 aldagaietan proba desber-
dinak egin ondoren, sailkapen errorea minimizatzen duen puntua X1 aldagaiko t1
dela ondorioztatu du. Errore neurketa hori egiteko, arruntena entropia edo Gi-
niren indizea erabiltzea da. Behin t1 puntua zehaztutakoan, prozedura berdina
jarraitzen da t2 eta t3 puntuak lortzeko.

2Abantailak eta desabantailak sakonkiago ikusteko: [27] http://scikit-learn.org/stable/
modules/tree.html

3NP-complete-n inguruan ideia orokor bat egiteko: http://www.geeksforgeeks.org/

np-completeness-set-1/

http://scikit-learn.org/stable/modules/tree.html
http://scikit-learn.org/stable/modules/tree.html
http://www.geeksforgeeks.org/np-completeness-set-1/
http://www.geeksforgeeks.org/np-completeness-set-1/
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Algoritmo horrek ordea, zenbait kasutan huts egiten du sarrerako datuen bana-
penaren arabera, adibide bezala Irudia 1.9 dago. Hori konpontzeko erabiltzen den
metodo bat Pruning metodoa da (kimatze metodoa). Metodo honen ideia nagusia,
hasieran zuhaitz handi bat lortzea da eta ondoren, zuhaitz horren nodo edo hos-
toak ezabatzen edo mozten joatea interesekoa den zuhaitz txikiago bat lortu arte.
Metodo hau overfitting-a saihesteko ere erabiltzen da, erregularizazio modura.

Irudia 1.9: Grafiko honetan, begi bistaz erraz sor daiteke zuhaitza, baina t1 eta t2 ebaketa
puntuak aukeratzeko orduan, algoritmoa ez zen gai izango puntu egokia aukeratzeko,
ez delako gai izango errorea minimizatzen duen puntua aukeratzeko. Kasu hauetarako,
aipatutako Pruning metodoa erabiltzen da.

1.2.3 Support Vector Machine (SVM)

Sailkapen metodoekin amaitzeko, support vector machine (SVM) metodoari buruz
hitz egingo da hurrengo lerroetan. SVM informatikako alorrean garatu zen 1990.
hamarkadan eta gero eta ezagunago egiten joan da urteak pasa ahala. Emaitza onak
ematen dituela ikusi da datu sorta ezberdinen aurrean eta askotan kontsideratu izan
da erabilera errazeko sailkapen metodorik hoberenetarikoena.

Funtzionamendua ulertzeko, lehenik eta behin hiperplanoaren definizio intuitiboa
emango da eta horrekin batera, maximum margin classifiers algoritmoaren ideia
nagusiak aztertuko dira. Behin hori definiturik, support vector classifier azalduko
da eta azkenik SVM metodoa.

Maximum margin classifier

Algoritmo edo teknika hau erabili ahal izateko, aztergai dauden datuek sailkapen
bitarra dutela eta linealki banangarriak4 direla suposatuko da. Linealki banan-

4SVM metodoaren atzean dauden matematikak hobeto ulertzeko eta definizio zehatzagoak iza-
teko [17] liburuko 9. atalean aurki daitezke.
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garria izateak, matematikoki, datu sortako puntuak hiperplano baten bidez banatu
daitezkeela esan nahi du. 2 dimentsioko espazio baten kasuan, zuzen batekin bana
daitekeela eta 3 dimentsioko espazio baten kasuan, plano batekin.

Irudia 1.10: Irudiko 2 datu sortak linealki banangarriak dira. Lehenengoan, 3 dimentsioko
espazioan plano banatzaile bat lortu da eta bigarrenean, 2 dimentsioko espazioan, zuzen
banatzaile bat.

Linealki banangarriak diren datu sortetan, kasu gehienetan infinitu hiperplano
existituko dira sailkapena egin ahal izateko. Adibide bezala Irudia 1.11 dago, bi zu-
zenak balio dute sailkapenerako, baina kasu horretan 2. sailkapenari pisu handiagoa
emango zaio, hobea izango da nolabait.

Irudia 1.11: Linealki banangarria den datu sorta berdinaren bi sailkapen desberdin.

Maximum margin classifier -ek 2. emaitza hori bilatzen du hain zuzen ere: klase
bakoitzetik distantzia urrunera dagoen hiperplanoa. Distantzia hori maximiza-
tzeko erabiltzen den ideia intuitiboa Irudia 1.12-n agertzen da.

Lehenik eta behin, klase bakoitzeko puntuen multzo konbexua eratzen da eta
behin eratutakoan, multzo horietatik urrutien dagoen hiperplanoa bilatzen da, hau
da, bi multzo horien erdibidean dagoen hiperplanoa.
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Irudia 1.12: Maximum margin classifier -en ideia intuitiboa.

Hiperplano hori, matematikoki lortzen da optimizazio problema baten soluzio
bezala, hurrengo lerroetan idatziko dena:

• Izan bitez hurrengo sarrerako datuak x1, . . . , xn ∈ Rp eta datu horiei dagokien
klase bitarra y1, . . . , yn ∈ {−1, 1}.

• Helburua β0 +β1X1 + . . .+βpXp = 0 hiperplano bat lortzea da ikusi diren bal-
dintzak betetzen dituena. Horretarako, βi balio egokiak aukeratu beharko dira
i = 0, 1, . . . , n balioetarako. Balio horiek, hurrengo optimizazio problemaren
soluziotik lortzen dira:

max
β0,β1,...,βn

M

hurrengo bi baldintzetara loturik
p∑
j=1

β2
j = 1

yi(β0 + β1xi1 + . . .+ βpxip) ≥M, ∀i

Support vector classifier

Support vector classifier -en ideia, maximum margin classifier -en ideia berdina
da, hiperplano egoki bat aukeratzea sailkapenerako. Kasu honetan ordea, sarrerako
datuek ez dute zertan linealki banangarriak izan behar, hau da, kasu orokorragoeta-
rako balio du. Hori lortzeko, sailkapenean erroreak egon daitezkeela onartu beharko
da. Halere, metodoaren funtsa berdina izaten jarraitzen du.

Kasu honetan, optimizatu beharreko problema honakoa da:
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max
β0,β1,...,βn,ε1,...,εn

M

hurrengo baldintzetara loturik
p∑
j=1

β2
j = 1

yi(β0 + β1xi1 + . . .+ βpxip) ≥M(1− εi), ∀i

εi ≥ 0,
n∑
i=1

εi ≤ C

Ikus daitekeenez, aldaketa nagusia εi balioak agertzen direla da. Horrek, sailka-
penean erroreak egotea baimentzen du eta C balioak errore hori bornatzen du (C
balioa erregularizaziorako parametro bezala kontsidera daiteke).

Support vector machine

Datuak hiperplano baten bidez sailkatzea sarritan nahikoa izango da, baina oro-
korrean jasotako datuak ezingo dira linealki banatu, sailkapen konplexuagoak izaten
dituztelako, Irudia 1.13-n ikus daitekeen bezala. Kasu horietarako, SVM erabiltzen
da, support vector classifier -en hedapen bat. Hedapen horretarako, kernel -ak sar-
tzen dira jokoan.

Irudia 1.13: Linealki banatzea ezinezkoa den datu multzoa.

Kontutan izan SVM metodoaren atzean dagoen ideia azalduko dela hurrengo
lerroetan, honen atzean dauden matematikak eta teoria zerbait konplexua delako eta
ez delako koaderno honen helburua alde teknikoetan gehiegi sartzea. Esan bezala,
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SVM-ren funtsa kernel desberdinak erabiltzen datza eta informazio gehiago nahi
duen irakurlearentzat [17] liburuko 9. ataletik hastea gomendatzen da, atal honetan
ulertzeko errazagoa den azalpen bat emango delako.

Irudia 1.13-ko adibidearekin jarraituz gero. Bertan, ezin da sailkapen egoki bat
egiteko gai den hiperplano bat aurkitu, gogoratu kasu horretan hiperplanoa zuzen
bat izango dela. Ondorioz, kasu horiei konponbide bat emateko datuak espazioz
aldatuko dira. Horretarako, φ funtzio bat definituko da non φ : Rp −→ RP funtzio
horrek datuak dimentsio handiago batera eramango dituen. Horren adibide gisa,
Irudia 1.14-ko ezkerreko grafikoa azter daiteke. Bertan, Irudia 1.13-ko R2 datuak
R3 espaziora pasatzen dira hurrengo φ funtzioaren bidez:

φ : R2 −→ R3

(x, y) −→ φ(x, y) = (x, y,
√
x2 + y2)

Datuak espazio berri horretara eraldatutakoan, hiperplano bat eratzeko aukera
dago sailkapen egoki bat egiteko gai dena. Adibideko kasuan, z = 2 hiperplanoa
hartu da. Behin hiperplanoa lortutakoan, jatorrizko espaziora bueltatzen da lortu
den sailkapen eremua aztertzeko (Irudia 1.14-ko eskuineko grafikoa).

z = 2 =⇒ 22 = x2 + y2

Irudia 1.14: Ezkerreko irudian, 2 dimentsiotik 3 dimentsiora pasatu dira datu originalak φ
funtzio baten bidez eta ondoren hiperplano baten bidez sailkatu dira. Eskuineko irudian,
hiperplano horren banaketaren bidez lortutako sailkapen finala agertzen da.

Gogoratu, SVM metodoaren inguruan azaldutakoa era intuitibo eta errazean
azaltzeko asmoarekin egin dela. Batez ere kontutan izan behar da SVM-n erabiltzen
diren kernel desberdinek, Support vector classifier eta Maximum margin classifier -
en ikusitako algoritmo eta teknikak erabilgarri egiten dituztela linealki banangarriak
ez diren kasuetarako. Horien bidez, espero daitekeen bezala nahi bezain sailkapen
konplexuak lor daitezke kernel egokiak erabili ezkero.
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1.3 Ereduak testatzen

Orain arte, kapitulu honetan Supervised Machine Learning-en barnean dauden me-
todo ezberdinak ikusi dira ereduak sortzeko. Hala ere, aztertu den bezala eredu
horiek sortzeko hainbat era ezberdin daude eta horien bidez sortutako sailkapen edo
erregresio metodoek diferentzia nabarmenak izan ditzakete. Hori horrela izanik, au-
kera ezberdin horietatik egokiagoa edo aproposagoa zein den erabakitzeko modu bat
beharko da.

Ereduak sortzerako orduan, kontutan izan behar da kasu gehienetan etorkizu-
nean jasotzen diren datuak ondo sailkatzeko gai izan behar dutela. Adibide bezala,
Irudia 1.15 kontsidera daiteke. Bertan, bi grafiko ageri dira. Gurutze berdeak, sarre-
rako datuak dira, ereduak sortzeko erabili direnak, eta lerro laranja eta urdina berriz
sortu diren 2 eredu ezberdin. Ezkerreko grafikoan begiratuz gero, urdinez marraz-
tutakoak datuak inongo errorerik gabe kokatzen ditu eta laranjaz marraztutakoak
aldiz errore batzuk ditu. Datu berriak sartzerakoan ordea, eskuineko grafikoan gu-
rutze gorrien bidez adierazita daudenak, eredu laranjak datuen jokaera era egokiago
batean adierazten duela ikusten da, errore baxuagoa sortuz.

Irudia 1.15: Ezkerreko irudian, sarrerako datuekin (gurutze berdeak) sortu diren 2 eredu
ezberdin ageri dira (laranjaz eta urdinez). Eskuineko irudian berriz, datu berriak agertzen
dira (gurutze gorriak).

Askotan ordea, ezin izango da itxaron datu berriak etorri arte ereduak testatzeko
eta ondorioz, eskura dauden datuak erabiltzen dira testak egiteko. Ideia nahiko
sinplea da: eskura dauden datuen zati bat entrenatzeko eta bestea testatzeko era-
biltzea. Hau da, datuen zati bat eredua sortzeko erabiltzea eta bestea datu berri
bezala kontsideratuz testak egiteko erabiltzea.

Horretarako ordea, oso garrantzitsua da banaketa hori ahalik eta era
uniformeen egitea, ahalik eta datuen aldakortasun handiena jaso ahal izateko.
Adibidez, Europan dauden jatorduen inguruko modelo bat eraikitzea nahi baldin
bada, ez da egokia izango eredua sortzeko Espainiako datuak kanpoan uztea eta
eredua testatzeko Espainiako datuak erabiltzea.
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1.3.1 Training, validation eta test set

Ereduak testatzeko, datuak 3 zatitan banatzen dira orokorrean: training set, va-
lidation set eta test set. Banapen hori egiterako orduan, jarraibide orokor batzuk
daude. Datu kopurua 100, 1.000 edo 100.000 ingurukoa baldin bada, datuen %70-
%80-a training set barruan sartzen da eta geratzen den %30-%20-a validation set
eta test set-en artean erdibituz. Datu kopurua handiagoa den kasuetan, 1.000.000
elementutik gorakoak adibidez, %98 inguru erabiltzen da training set bezala, %1-a
validation set bezala eta %1 test set bezala.

Training set-aren bidez modeloa sortzen da, erregresiorako zein sailkapenerako.
Kasu batzuetan ordea, eredu horiek sarrerako datuetara gehiegi doitzen dira (over-
fitting) eta ondorioz ez dute datu berrietarako balio. Irudia 1.15-ko eredu urdina
horren adibide garbia da.

Validation set-a, kasu horiek ekiditeko erabiltzen da hain zuzen ere. Datu multzo
honen bidez, eredu desberdinak testatzen dira overfitting-a ematen den edo ez
aztertzeko. Eredua aukeratzeko, taula edo grafiko bat marrazten da training set-
ean eta validation set-ean sortutako erroreekin (Irudia 1.16) eta bi erroreak ahalik
eta txikienak izatea bilatzen da.

Irudia 1.16: Grafiko honetan, Irudia 1.15-eko datuekin lortutako erroreak (Bataz besteko
errore koadratikoa) agertzen dira erabilitako funtzio polinomikoaren mailaren arabera.
Irudia 1.15-n ikusten den bezala, 1. mailako polinomioak, 8. mailakoarekin konparatuz
errore handiagoa sortzen du training set-ean, baina txikiagoa validation set-ean.

Irudia 1.16-n ikus daitekeen bezala, eredua gero eta konplexuagoa den heinean,
training set-ean ematen den errorea gero eta txikiago da, datu horiek era zuzenean
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kokatzeko gaitasuna duelako. Bestalde, validation set-ean ematen den errorea az-
tertzen bada, 3. mailatik aurrera errorea dezente handitzen dela ikusten da. Hori
da hain zuzen ere overfitting-aren adierazpen grafikoa.

Esan bezala, helburua overfitting-a ekiditea eta sortutako erroreak minimizatzea
denez, maila 1 edo 2 duen eredua aukeratuko zen kasu honetan. Orokorrean, vali-
dation set-ean errorea minimizatzen den eredua aukeratzen da. Baldintza hori be-
tetzen duten hainbat eredu baldin badaude, training set-eko errore txikiagoa duena
aukeratzen da.

Behin eredua aukeratutakoan, eredu horren kalitate testa egiteko test set-a era-
biltzen da. Validation set-arekin alderatuz, errore finala kalkulatzeko bakarrik era-
biltzen da eta ez da erabiltzen ereduaren aukeraketa egiterako orduan.

Testen inguruan informazio gehiago nahi duen irakurleak [17] liburuko 5. kapitu-
luan aurki dezake. Bertan, cross-validation bezalako testen inguruko informazioa
agertzen da, baita errorea neurtzeko erabiltzen diren forma ezberdinak ere.



Kapitulua 2

Unsupervised Learning

Unsupervised Learning, etiketarik gabeko datuen ezkutuko egitura inferitzeko
Machine Learning-eko zeregin bat da. Zeregin horretarako, datuek ez dute inongo
klase, kategoria edo sailkapenik eta Supervised Learning-ekin alderatuz, datuetatik
inferitutako ereduak ebaluatzeko metodoak subjektiboagoak dira.

Era askotako algoritmoak eta metodoak sartzen dira talde honetan, baina oro-
korrean harturik bi zeregin nagusi daude etiketaturik gabeko datuekin: datuak
taldekatzea eta datuen dimentsioa murriztea.

Lehenengoen kasuan, seguruenik ezagunena den kasua clustering-arena da (2.1
azpi-kapituluan ikus daitekeena), non datuak taldekatu egiten diren beraien ezau-
garri komunengatik. Beste kasu ezagun bat anomalien detekzioa izan daiteke.
Metodo horietan, helburua jasotako datuetatik urruti dagoen edo arraroa den da-
tua edo datu sorta identifikatzea da. Koaderno honetan datuak taldekatzearekin
zerikusia duten beste 2 azpi-kapitulu daude: Matrize Faktorizazioa (2.3 azpi-
kapitulua) eta Association Analysis (2.4).

Bestalde, datuen dimentsioaren murrizketaren inguruan Osagai Nagusien
Analisian (2.2 azpi-kapituluan) azaltzen da adibideetako bat. Datuen dimentsioa
murriztearen jomuga, datuen interpretazioa handitzea eta behar ez den informazioa
baztertzea da. Beste era batean esanda, datuen ulergarritasuna eta sinpletasunari
ematen zaio garrantzia.

Atal honetan ikusiko den bezala, Unsupervised Learning-eko ereduak askotan Su-
pervised Learning-eko ereduen antzera landu daitezke, aldaketa txiki batzuk eginda,
nahiz eta ereduen kalitatea edo egokitasuna neurtzeko beste teknika batzuk erabili
beharko diren.

2.1 Cluster

Clusterrak osatzeko garaian, esan bezala sarrerako datuak inongo etiketarik edo
sailkapenik gabe ematen dira, eta helburua, datu horiek multzokatzea da beraien
gertutasun edo antzekotasunen arabera.

Matematikoki esanda, X espazioko x1, . . . , xn n datuak, K ∈ N multzo des-
berdinetan sailkatzea izango da helburua, distantzia txikira dauden puntuak cluster

25
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berean sartuz. Gauzak errazteko asmoarekin, aldagaiak jarraituak direla suposatuko
da eta X = Rd espazio bektoriala dela (adibideetan X = R2 erabiliko da).

Eratzea nahi diren multzo kopuruaren aukeraketa, dezente subjektiboa izan dai-
teke eta kasuaren arabera aztertu beharreko gauza bat da, nahiz eta batzuetan
lortu beharreko cluster kopurua aurretik finkatuta etortzen den (Demagun adibi-
dez EAEn jasotako neurketa desberdinekin, herri bakoitzeko begetazio mailari 1etik
5erako nota bat ezartzea eskatzen dela). Hurrengo metodoaren barnean K cluster
kopurua aukeratzeko modu bat azaltzen da.

Irudia 2.1: Ezkerreko irudian sarrerako datu multzoa ageri da eta eskuinekoan aldiz, datu
multzo hori 2 clusterretan banatuta. Eskuineko irudian agertzen diren 2 gurutze beltzak,
2 cluster horien µ1 eta µ2 zentroideak dira.

K -Means metodoa

Clusterrak osatzeko metodo erraz, sinple eta erabilienetariko batK-Means me-
todoa da. Metodo honen ideia nagusia µk puntu jakin batzuen (zentroide izene-
koak) inguruan dauden puntuak k. taldera batzen datza eta zentroide horiek honela
definitzen dira:

µk =
1

nk

nk∑
i=1

xi1{ci=k} ∈ Rd (2.1)

non nk, k. taldeko elementu kopurua den, 1 funtzio adierazlea eta c ∈ {1, . . . , K}
talde adierazlea:

ci = k ⇔ xi elementua k. clusterrean dago (2.2)

Algoritmoaren helburua c =(c1, . . . , cn) eta µ =(µ1, . . . , µK) optimoak lortzea
da, puntu guztiak bere clusterretik ahalik eta gertuen egoteko. Matematikoki idatziz
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gero, honako hau lortu nahi da:

arg min
µ,c

n∑
i=1

K∑
k=1

1{ci=k}d(xi, µi) (2.3)

non d erabili nahi den distantzia neurria den.
Minimizazio problema hori ordea, NP-Hard1 [11] problema bat da, hau da, kon-

putazionalki oso konplexua. Arazo horri aurre egiteko errazagoak diren beste algo-
ritmo batzuk erabiltzen dira, minimo lokalak lortzen dituztenak eta erabilienetako
bat Lloyd-en algoritmoa da. Algoritmo horretan, zentroideak iterazio bidez lor-
tzen dira eta 2 oinarrizko pausu ditu: zentroideak birdefinitu eta taldeak birdefinitu
(konbergentzia lortu arte).

Algoritmoaren ideia intuikorra ulertzeko, interneten ehunka bideo eta animazio
ezberdin aurki daitezke. Adibide bezala hurrengo link-a uzten da:

https://www.youtube.com/watch?v=5I3Ei69I40s

Kontutan izan, orokorrean K-ren balioa gero eta handiagoa denean, orduan eta
balio txikiagoa izango dela (2.3)-ren balioa. Ondorioz, K aukeratzeko era bat, K-
ren balioak banaka-banaka handitzen joatea da eta (2.3)-ren balioa gutxi txikitzen
den momentuan, azkeneko K balioarekin geratuz. Adibide bezala Irudia 2.2 hartzen
baldin bada, kasu horretan 3 cluster sortzea gomendatuko zen, hain zuzen ere hortik
aurrera errorean ematen den hobekuntza txikitzat jotzen delako. Metodo hau ordea
gida edo orientazio moduan erabili behar da, lortu nahi diren helburuen arabera
cluster gehiago edo gutxiago sor baitaitezke.

Irudia 2.2: Grafiko honetan, K cluster kopurua handitzearekin batera, trinkotasuna han-
ditzen dela aztertzen da, hau da, cluster bakoitzeko elementuak gertuago daude beraien
artean.

1NP-Hard -n inguruan ideia orokor bat egiteko:
http://www.geeksforgeeks.org/np-completeness-set-1/

https://www.youtube.com/watch?v=5I3Ei69I40s
http://www.geeksforgeeks.org/np-completeness-set-1/
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Metodo probabilistikoak

Hortaz aparte, clusterrak sortzeko metodo probabilistikoak ere daude. Lor-
tzea nahi dena berdina da, datuetatik K talde lortzea, baina datu horien inguruko
suposizio batzuk egiten dira eta horrela inferentzia estatistikoa erabiltzeko aukera
ematen dute.

Suposizio bezala, jasotako datuak banaketa normal ezberdinetatik datozela kon-
tsideratzen bada (kasu hori Gaussian Mixture Model (GMM)2 bezala ezagutzen
da), lortzea nahiko den cluster-en banapena N(µi,Σi) erakoa izango da.

Irudia 2.3: Grafiko honetan, 4 cluster daudela ikusten da eta cluster bakoitzeko puntuak
banaketa normal batetik lortutakoak direla suposatzen da N(µi,Σi).

GMM-ren alde ona, esan bezala inferentzia estatistikoa erabil daitekeela da, on-
dorio eta egitura indartsuagoak atera ahal izateko. Hala ere, lortzen diren clusterrak
forma jakin batekoak izango dira. Irudia 2.3 aztertzen bada, 2 dimentsiotan lortzen
diren clusterrak elipsoide formakoak izango dira, banaketa normala hartzen delako
abiapuntutzat.3

2.2 Osagai Nagusien Analisia

Osagai Nagusien Analisia (Principal Component Analysis (PCA) ingelesez), sarre-
rako datuen dimentsio erredukzioa egiteko erabiltzen den metodoa da batik bat.
Suposatu sarrerako datuak x1, . . . , xn ∈ Rd direla, d, elementu bakoitzaren aldagai
kopurua izanik. Askotan, dimentsio edo aldagai horietako batzuk informazio be-
rri oso gutxi eskaintzen dute edota beraien artean kolinealtasuna egoten da. Hori
dela eta, beharrezkoak ez diren aldagaiak ezabatzea desiragarria izango da memoria
aurrezteko eta konputazio denbora murrizteko.

2GMM-ren atzean dauden matematikak ezagutzeko [2] liburuko 9.2 atalera jo daiteke.
3Python programazio-lengoaiak pakete ugari ditu clusterrak era ezberdinean eratzeko [27]:

http://scikit-learn.org/stable/modules/clustering.html

http://scikit-learn.org/stable/modules/clustering.html
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Irudia 2.4: Ezkerreko irudian, sarrerako datuak eta eskuinekoan berriz PCA aplikatu eta
gero lortutako emaitza.

Irudia 2.4 begiratu ezkero, PCA algoritmoak egiten duena ikus daiteke era intui-
kor batean. Sarrerako datuek, 4 dimentsio dute: 3 espazialak eta bat kolorearentzat.
Oraingoan, puntu horien sailkapen bat lortzea nahi da eta hori lortzeko bi aukera
daude. Aukera bat, zuzenean lanean hastea da nahi den sailkapen metodoren ba-
tekin. Beste aukera bat, dimentsio erredukzioa aplikatzea da eta hori egin ondoren
aplikatzea sailkapen metodoa. Eskuineko irudian ikus daitekeenez, dimentsio espa-
zial bat ezabatu da, informazio kantitate esanguratsu bat eta hala ere sailkapena
era egokian egiteko aukera dago.

PCA, Balio Propioen Deskonposizioan4 oinarritzen da. Datuen X ∈ Rn×d ma-
trizea eratzen bada:

X =

— x1 —
...

— xn —


XXT matrize erdidefinitu positiboa izango da eta ondorioz r ≤ min{d, n}

balio eta bektore propio izango ditu.

Balio propioak: λ1 ≥ λ2 ≥ . . . λr ≥ 0

Bektore propioak: q1, q2, . . . , qr

Aztertutako metodo gehientsuenetan bezala, aldagaien normalizazioak garrantzi
handia du, bestela balio handiko aldagaiek besteekiko pisu handiagoa izango dute.
Nola jakin daiteke ordea zenbat aldagai edo dimentsio mantendu?

Galdera horrentzako ez dago erantzun zehatz bat, baina orokorrean bariantza
aztertzen da aldagai kopurua zehazteko. Ideia nagusia, datuen bariantza osotik
aukeratutako aldagaiek azaltzen duten bariantza aztertzea da: azaldutako bariantza
hori handia bada, aldagai horiekin geratzen da.5

Irudia 2.5-n ikus daitekeenez, datu sorta bati PCA aplikatu ondoren, aldagai edo
dimentsio bakarrarekin bariantza totalaren %60-a baino gehiago azaltzen da, 2 alda-
gairekin %80-a baino gehiago eta 3 aldagai edo gehiagorekin %90-a baino gehiago.

4Balio Propioen Deskonposizioaren inguruan informazio gehiago nahi izanez gero, aljebra linea-
leko liburu gehientsuenetan aurki daiteke, [33] liburuko 5 atalean adibidez.

5Bariantzaren zehaztasun matematikoak [17] liburuko 10.2.3 atalean aurki daitezke.
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Irudia 2.5: PCA-ren bidez aldagai kopuru desberdinekin azaltzen den bariantza pilatua
ehunekotan.

Hori ikusita, zenbat aldagai kopuru hartu erabaki behar da eta horretarako ere ez
dago arau zehatzik. Era subjektiboan egiten da kasuaren arabera eta begiratzen
diren puntuak honako bi hauek dira batik bat: ehuneko bariantza handi bat azal-
tzea eta hortaz gain aldagai berriek bariantza gutxi handitzen dutenean. Adibideko
kasuan, 2 aldagairekin geratzea nahiko arrunta litzateke.

2.3 Matrize faktorizazioa

Gaur egunean, merkatuaren zati handi bat interneten aurkitzen da: pelikulak, mu-
sika, arropa, janaria eta elektronikako aparatuak erosi/alokatu daitezke besteak
beste. Erosi/alokatu daitezkeen gauzen lista ordea, oso handia da eta ia ezinez-
koa da dena begiratzen eta aztertzen hastea. Hori dela eta, azken urteetan bereziki
garrantzitsu bilakatu dira gomendio sistemak.

Gomendio sistema horietan erabiltzen den metodo bat collaborative filtering
metodoa da. Kasu hauetan, gehienetan erabiltzaileak egongo dira alde batetik eta
objektuak bestetik. Lortzea nahi izaten dena, erabiltzaileek objektu desberdinei
emandako puntuazioak gorde eta horietatik ikastea da. Horrela, algoritmoa objektu
berriak gomendatzeko gai izango da beste erabiltzaileen puntuazioa aztertuta. Ideia
nagusia honakoa da: bi pertsonek puntuazio oso berdintsua eman baldin badute
hainbat objektu ebaluatzerako orduan, beste objektuetan ere antzeko puntuazioa
emango dute seguruenez. Erabiltzaileen eta objektuen arteko taldekatze sistema
bat bilatzen da funtsean.

Matrize faktorizazioa, collaborative filtering metodorako erabiltzen den algo-
ritmo bat da hain zuzen ere.

Algoritmoaren ideia

Metodo honetan, gauzak sinplifikatuz, hasieran P matrize bat osatzen da. Ma-
trize horren zutabeetan objektuak jartzen dira eta lerroetan erabiltzaileak eta P
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Irudia 2.6: Matrize faktorizazioaren eskema

matrizeko elementuak, puntuazioak izango dira. Beste era batean esanda, P ma-
trizeko pij elementua, i erabiltzaileak j elementuari eman dion puntuazioa izango
da (1etik 5era, 1etik 10era edo dena delakoa). Matrize horretan elementu gehienak
hutsik egongo dira, erabiltzaile bakoitzak objektu gutxi batzuk ebaluatzen dituelako
bakarrik, eta algoritmoaren helburua hutsune horiek era egokian estimatzea izango
da.

Hori lortzeko, Balio Singularretako Deskonposizioaren6 ideia erabiltzen da (SVD
siglak erabiltzen dira ingelesez). Balio Singularretako Deskonposizioaren bitartez,
matrize baten balio propioak lortzen dira, matrizearen funtsa nolabait.

Gomendio sistemetarako ordea, ezin da zuzenean SVD deskonposizioa erabili, P
matrizearen balio gehienak faltako direlako, % 99 inguru. Hori dela eta, Irudia 2.6-ko
eskema bat lortzen saiatu beharko da, non pij ≈ uTi · vj izango den eta minimizatzea
nahiko den errorea: ∑

(i,j)∈κ

(pij − uTi · vj)2 (2.4)

κ multzoan P matrizeko osagai ez-nuluak egongo dira. Hortaz gain, errorea
kalkulatzeko orduan erregularizazioa kontutan hartuz gero (erregularizazioaren in-
guruan 1. kapituluan ageri da informazio gehiago, 1.1.1. atalean definitzen delarik),
honakoa izango da minimizatu beharreko errorea:∑

(i,j)∈κ

(pij − uTi · vj)2 + λ(‖ui‖2 + ‖vi‖2) (2.5)

Errore hori minimizatzeko, bi algoritmo nagusi daude Stochastic Gradient Des-
cent eta Alternating Least Squares7. Hemen, Alternating Least Squares-en ideia
nagusiak azalduko dira.

• Hasteko, V T matrizea hasiarazten da vj bektoreak zoriz aukeratuz N(0, λ−1I)
banapen batetik.

6SVD deskonposizioaren inguruan informazio gehiago nahi izanez gero, aljebra linealeko liburu
gehientsuenetan aurki daiteke, besteak beste [33] liburuko 6.3 atalean.

7Algoritmoaren inguruko informazio gehiago [20] artikuluan aurki daiteke.
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• Ondoren, V T matrizeko balioak finkatuta daudela, U matrizearen balioak egu-
neratzen dira (2.5)-ko balioa ahalik eta txikiena izateko.

• U eguneratuta, U finkatuta utzi eta V T matrizea eguneratu (2.5) balioa ahalik
eta txikiena egiten duena.

• 2 eta 3 pausoak errepikatu konbergentzia lortu arte.

Oharrak

Matrize faktorizazioa aplikatzeko, hurrengo puntuak kontutan izan beharko dira:

• P puntuazio matrizeak, balio gehienak nuluak izan beharko ditu.

• P matrizearen heina bere dimentsioa baino askoz txikiagoa izan beharko da.

• Metodoak emaitza onak emateko, erabiltzaileen arteko korrelazioa izatea de-
siratuko da, P matrizeko lerroak korrelatuta egotea.

• Algoritmoarekin lortuko den P̃ = U · V T matrizeko elementu batzuk balio
arraroak izan ditzakete: balio negatiboak edo balio altuegiak (1etik 5erako
balorazioetan 6.1 emaitza lortzea adibidez). Hori konpontzeko, balorazio sis-
temara bornatu beharko dira lortutako emaitzak.

• Erabiltzaileak eta objektuak erabiltzeaz gain, beste faktore batzuk gehi dai-
tezke: bilaketa historiala, herrialdea, adina, etab. Kasu horietarako, Tensore
faktorizazioa8 erabiltzen da.

• Irudia 2.6-n agertzen den Heina edo r balioa, ez da P matrizearen heina,
ezin daitekeelako kalkulatu era klasikoan. Ondorioz, r balio desberdinetarako
testak egiten dira (10, 50, 100, 200 adibidez) eta baliorik desiragarrienarekin
geratu (errore/kostu-konputazional erlazio onenarekin adibidez).

2.4 Association Analysis

Association Analysis, gehienetan dendekin lotzen den metodoa da. Helburua, eros-
keta zesta batean sarritan batera doazen produktuak identifikatzea da. Adibide
bezala, pentsa daiteke ordenagailu eramangarri bat erosten duenak seguruenik orde-
nagailuarentzako maleta bat ere hartuko duela edo interesa dakiokeela. Horregatik,
interesa egon daiteke erlazio horiek identifikatzea eta erosleari pack edo bilduma
batean saltzen saiatzea.

Ondoren ikusiko den bezala, oinarrizko matematika erabiltzen duen metodoa da,
ulerterraza eta datuen aurreprozesaketa oso urria behar duena.

Irudia 2.7 begiratzen bada, bertan erosketa zesta desberdinak agertzen dira eta
batik bat, honako 2 analisi hauek egitea nahi da:

8 [30] liburuaren 19.4.2.1 atalean aurki daiteke informazio gehiago.
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Irudia 2.7: Erosketa zesta desberdinen adibide bat.

• Association analysis: Produktu desberdinekin osaturiko azpimultzoak az-
tertzen datza. Demagun Irudia 2.7 adibidean {Garagardoa, Esnea} produk-
tuen arteko lotura aztertzea nahi dela. Horretarako, zestaren probabilitatea
honela kalkulatzen da:

P ({Garagardoa, Esnea}) =
{Garagardoa, Esnea} duten zesta kopurua

Aztergai dauden zesta kopuru totala
=

4

8
= 0.5

• Association rules: Produktu edo objektuen arteko korrelazioa neurtzen du
nolabait. Demagun Irudia 2.7 adibidean A ={Garagardoa, Esnea} erosi ez-
kero, B ={Gozokiak} erosteko probabilitatea neurtzea eskatzen dela:

P (B|A) =
{Garagardoa, Esnea, Gozokiak} duten zesta kopurua

{Garagardoa, Esnea} duten zesta kopurua
=

3

4
= 0.75

Bestalde, A ={Garagardoa, Esnea} produktuen garrantzia azter daiteke
B ={Gozokiak} erosteko garaian:

L(A,B) :=
P (B|A)

P (B)
=

3/4

6/8
= 1

Kasu horretan, 1 horren esanahia honakoa da: probabilitate berdina dago
{Goxokiak} erosteko {Garagardoa, Esnea} erosi edo ez erosi (L(A,B) =
2 izango balitz adibidez, esanahia desberdina izango zen: 2 aldiz proba-
bleagoa izango zen {Goxokiak} erostea {Garagardoa, Esnea} erosi ezkero,
{Garagardoa, Esnea} ez erostearekin alderatuz).

Batik bat horiek dira analisi honetarako erabiltzen diren tresnak. Hala ere, datu
kopurua oso handia bada, analisi hori egitea ezinezkoa da konputazionalki. Ez da
posible izango objektuen azpimultzo guztiak aztertzea eta objektu guztien arteko
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Irudia 2.8: A, B, C eta D objektuekin osatutako zesta posible guztien grafoa.

erlazioa ikustea. Konponbide bezala, Apriori Algoritmoa erabiltzen da. Algorit-
moaren funtsa, eraikitzen doan zuhaitz erraldoi hori mozten joatea da probabilitatea
txikiegia denean.

Irudia 2.8-n ikusten den grafoan, zuhaitz osoa marraztu da, baina suposatu nahi
dena zestaren probabilitatea t ∈ [0, 1] balio bat baino handiagoa izatea dela eta
P (AB) < t dela. Hori horrela izanik, AB zesta ezabatuko da, baina ez hori ba-
karrik, AB zestako produktuen konbinazioz osaturiko zesta guztiak baizik, horien
probabilitatea ere t baino txikiagoa izango delako.

Irudia 2.9: Apriori Algoritmoaren eskema

Horiek denak ezabatu ezkero, Irudia 2.9-ko grafoa lortuko da, hau da, hainbat
zesta ezabatuko ziren aldez aurretik, hori da hain zuzen ere Apriori Algoritmoa-
ren ideia9.

9Gaiaren eta algoritmoaren informazio zehaztuagoa [15] liburuko 14.2 atalean aurki daiteke.
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Sequential Data

Kapitulu honetan, egitura berezi bat duten datuak aztertuko dira: sequential data.
Datu mota horiek orokorrean ordenaturik egoten dira era espezifiko batean eta or-
dena horrek garrantzia handia hartzen du. Donostiako eguraldiaren adibidearekin
sartuz gero, eguraldiaren neurketa ezberdinak (prezipitazioa, tenperatura, presio
atmosferikoa...) denbora ezberdinetan zehar egiten dira eta lortutako datu horiek
kronologikoki ordenatzen dira gehienetan. Adibide horretan, ordenak eta kronolo-
giak garrantzia berezia hartzen du, ez baita berdina azaroan edota ekainean egitea
neurketak. Aldi berean, eguraldia aurresateko garaian inportantzia nabarmena iza-
ten du aurreko egunetan gertatukoak.

Burtsan ere, akzioen balioak kronologikoki ordenatuta egotea ia derrigorrezkoa
da analisi egokiak lortzeko eta aurreikuspenak egiteko. Hori dela eta, 3. kapituluan
horrelako datuekin egiten diren analisi ezberdinak aztertuko dira.

Horretarako, Markov-en kateak eta Hidden Markov Model-ak aztertuko
dira. Hurrengo azpi-kapituluetan ikusiko den bezala, metodo horien bidez besteak
beste sailkapen edo/eta cluster-ak egiteko aukera ematen dute. Halere, 1. eta 2.
kapituluetan ez bezala, metodo hauen bidez ematen diren aukerak askoz anitzagoak
eta orokorragoak dira eta horregatik ez dira Supervised Learning ezta Unsupervised
Learning-en barruan sartu.

3.1 Markov-en kateak

Markov-en kateak, Andrey Markov matematikari errusiarraren omenez izendatu-
takoa, memoriarik gabeko datu sekuentziari deitzen zaio. Beste era batera esanda,
datu sekuentzia horretan pausu bakoitzean eman den emaitzak, aurreko azken emai-
tzarekiko dependentzia bakarrik azaltzen du1. Hurrengo datu segida kontsideratzen
bada:

{x1, x2, . . . , xi, xi+1, . . . , xn}, xi ∈ R

1Markov-en kateen definizioa orokortu egin daiteke, aurreko azken m elementuekiko dependen-
tzia emanez. Kasu horietan, m memoriadun Markov-en kateak deitzen dira.

35
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non xi+1 balioak xi balioarekiko dependentzia bakarrik duen, i ∈ {1, . . . , n − 1}
izanik. Definizioa, orokorrean era matematiko-probabilistikoan aurkezten da:

P (xi+1|xi, . . . , x2, x1) = P (xi+1|xi), ∀i ∈ {1, . . . , n− 1}

Adibide bezala, eguraldiarena jarriko da. Gauzak asko sinplifikatuz, demagun
gaurko eguraldia atzoko eguraldiarekiko dependentea bakarrik dela eta hurrengo
probabilitateak lortu direla:

P (“Bihar ateri” | “Gaur ateri”) = 0.6

P (“Bihar ateri” | “Gaur euria”) = 0.3

P (“Bihar euria” | “Gaur ateri”) = 0.4

P (“Bihar euria” | “Gaur euria”) = 0.7

Ateri Euria
0.4

0.3

0.6 0.7

Probabilitate horiekin, trantsizio matrizea edo Markov matrizea eraiki dai-
teke hurrengo eran:

M =

[
0.6 0.4
0.3 0.7

]
Trantsizio matrizeko lerro bakoitzeko elementuen batura 1 izango da beti,

probabilitateen propietateengatik eta Mij elementua, i egoeratik j egoerara pasa-
tzeko probabilitatea izango da. Aurreko kasuan, M12 elementua atzo eguzkia egin
zuela jakinik gaur euria egiteko probabilitatea da.

Markov-en kateetan M trantsizio matrizea oso garrantzitsua da, katea guztiz
definitzen duelako. Matrize horren balioak lortzeko, kasuaren arabera era desber-
dinetan egiten da. Batzuetan, Mij elementuak aurrez definiturik egongo dira edota
erabiltzaileak definitu beharko ditu (aurreko adibidean aurrez definiturik zeuden).
Besteetan aldiz, estimatu egin beharko dira egiantz handieneko metodoa erabiliz
sarrerako datuei.

Gainera, banaketa egonkorra (stationary distribution ingelesez)2 lortzeko ezin-
besteko elementua da eta hurrengo definizioak garrantzia handia hartzen du aplika-
zioetarako:

M∞ := lim
n→∞

Mn

2Banaketa egonkorraren eta trantsizio matrizearen propietateak eta informazio gehiago [22]
liburuko 1. atalean aurki daiteke.
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Aplikazioak

Semi-supervised classification:3

Irudia 3.1-n agertzen den kasuetarako balio du: sarrerako puntu guztietatik gu-
txi batzuk bakarrik sailkatuta daudenean. Kasu hauetan, sailkatu gabeko puntu bat
hartzen da eta zorizko bide baten bidez puntu batetik bestera jauziz joaten da sail-
katutako punturen batera heldu arte eta gero talde berean sailkatzen dira4. Puntu
batetik bestera jauzi egiteko probabilitatea era askotan definitu daiteke, baina kasu
hauetan distantziaren arabera definitzen da: gertuko puntuek probabilitate handia-
goa izango dute urrunago daudenekin alderatuz.

Hortaz gain, hasieratik sailkatutako puntuak (Irudia 3.1-n agertzen diren puntu
urdina eta laranja) puntu xurgatzaileak izango dira, hau da, behin bertara iritsi-
takoan, ezingo da bertatik irten. xpx puntu xurgatzailea bada:

P (xi+1 = xpx|xi = xpx) = 1

Irudia 3.1: Ezkerreko irudian, sarrerako datuak agertzen dira. Bi puntu agertzen dira
sailkaturik, urdinez dagoena alde batetik eta laranjaz dagoena bestetik, gainontzekoak
sailkatu gabe daude. Eskuinean, Markov-en kate bat aplikatu ondoren lortutako sailkapena
agertzen da.

Ranking-ak eratzen:

Beste aplikazio posible bat, ranking bat eratzea da. Horretarako, trantsizio ma-
trize bat sortzen da era artifizial batean helburua betetzeko. Adibide bezala, esku

3Hurrengo link honetan animazio bidez azaltzen da metodoa:
https://www.datasciencecentral.com/profiles/blogs/a-semi-supervised-classification

-algorithm-using-markov-chain-and
4Zorizko bidea egin beharrean, M∞ matrizearen bidez kalkulatzen da puntu bakoitzaren sail-

kapena. j. elementuaren sailkapena M∞ matrizearen j. lerroan probabilitate handiena duen
elementuarena izango da.

https://www.datasciencecentral.com/profiles/blogs/a-semi-supervised-classification-algorithm-using-markov-chain-and
https://www.datasciencecentral.com/profiles/blogs/a-semi-supervised-classification-algorithm-using-markov-chain-and
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pilotako ranking bat era daiteke. Gauzak sinple hartzeko, demagun jokalari bat bes-
tea baino hobea dela partida irabazten badu eta amaierako emaitzak, zenbat aldiz
hobea den adierazten duela. Hau da, A jokalariak B jokalariari irabazten badio, A
jokalaria B baino hobea izango da eta amaierako emaitzaren diferentzia handia izan
bada gero eta hobea.

Pilotariak A B C
A X 22 - 18 22 - 11
B 18 - 22 X 22 - 20
C 11 - 22 20 - 22 X

Taula 3.1: Ikus daitekeenez, adibide honetan A pilotariak 2 partidak irabazi ditu eta C
pilotariak aldiz 2 partidak galdu.

Horrela definiturik, trantsizio matrizean B jokalaritik A jokalarira mugitzeak
probabilitate handia izango du eta A jokalaritik B jokalarira mugitzeak txikia. Behin
M trantsizio matrizea definiturik, M∞ matrizea kalkulatzen da. M∞ matrizeko
zutabeetako balio guztiak berdinak izango dira eta j zutabeko balioa j. pilotariaren
balorazioa izango da: gero eta handiagoa, gero eta hobea.

Pilotarien adibiderako, ebaluatzeko sistema honela egin da:

Mij =
i eta j-ren aurkako partidan j pilotariak eginiko tantuak

i pilotariaren partidetan galtzaileek egindako tantu kopuru totala + 22
, i 6= j

Mii = 1−
∑
j 6=i

Mij

Ebaluatzeko sistema horrekin, ondorengo trantsizio matrizea lortzen da:

M =


22

18 + 11 + 22

18

18 + 11 + 22

11

18 + 11 + 22
22

18 + 20 + 22

18

18 + 20 + 22

20

18 + 20 + 22
22

11 + 20 + 22

22

11 + 20 + 22

9

11 + 20 + 22

 =


22

51

18

51

11

51
22

60

18

60

20

60
22

53

22

53

9

53


eta horren bidez aurretik definitutako M∞ matrizea lortzen da:

M∞ =

 0.4047482 0.3496906 0.2455612
0.4047482 0.3496906 0.2455612
0.4047482 0.3496906 0.2455612


Beraz, lortutako ranking-aren arabera, A pilotaria izan da onena eta C pilotaria

txarrena.
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3.2 Hidden Markov Model

Zoritxarrez, askotan ezingo dira egoerak era zuzenean aztertu datuetatik. Suposa
dezagun adibidez, Titan satelitean5 metano euria noiz ematen den aztertzea nahi
dela. Demagun infragorri-teleskopio baten bidez azterketa hori egiten dela eta iker-
keta batean lortutako emaitzek ondokoa diotela:

P (“Ateri” | Infragorri maila < T0) = 0.2

P (“Euria” | Infragorri maila < T0) = 0.8

P (“Ateri” | Infragorri maila ≥ T0) = 0.9

P (“Euria” | Infragorri maila ≥ T0) = 0.1

non T0 balioa ikerketan lortutako balio ezagun bat den. Kasu honetan, eskura dau-
den tresnekin ezin daiteke egoera zehatza zein den jakin, infragorri maila bakarrik.
Demagun hortaz gain, egindako beste ikerketa batzuen arabera, hurrengo probabi-
litateak lortu direla:

P (“Bihar ateri” | “Gaur ateri”) = 0.6

P (“Bihar ateri” | “Gaur euria”) = 0.3

P (“Bihar euria” | “Gaur ateri”) = 0.4

P (“Bihar euria” | “Gaur euria”) = 0.7

Lortu nahi dena Titan sateliteko eguraldiaren gorabeherak estimatzea eta aurre-
saten saiatzea izango da jasotako datuekin (infragorri mailaren neurketaren bidez):

{t1, t2, t3, . . . , tn} Infragorri mailaren n neurketa.

Kasu honetan, 2 matrize izango dira, trantsizio matrizea:

A =

[
0.6 0.4
0.3 0.7

]
eta emisio matrizea:

B =

[
0.2 0.8
0.9 0.1

]
eta izan bedi lehenengo egunean euria edo ateri egiteko hasierako probabilitate ba-
naketa:

π = [0.5 0.5]

Jarri den adibide honetan, A, B eta π matrizeak ezaguntzat hartu dira, baina
kasu gehienetan ez da horrela izango eta matrize horiek estimatu beharko dira.
Hortaz gain, kasu honetan, adibideko Hidden Markov Model -a eredu diskretu bat
da, hau da, bertako egoerak diskretuak dira (euria edo ateri). Eredu diskretuetan 3
estimazio problema nagusi agertzen dira:

5Titan satelitearen inguruko informazioa hurrengo web orrialdean aurki daiteke:
https://www.space.com/15257-titan-saturn-largest-moon-facts-discovery-sdcmp.html

https://www.space.com/15257-titan-saturn-largest-moon-facts-discovery-sdcmp.html
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• {A,B, π} matrizeak izanda HMM diskretu baterako eta sarrerako
{t1, t2, . . . , tn} datuen segida, ti bakoitzaren egoeraren estimazioa lortzea. Pro-
blema horri aurre egiteko, Forward-Backward Algoritmoa erabiltzen da.

• {A,B, π} matrizeak izanda HMM diskretu baterako eta sarrerako
{t1, t2, . . . , tn} datuen segida, probabilitaterik handiena duen {s1, s2, . . . , sn}
egoera segida lortzea. Problema horretarako, Viterbiren Algoritmoa era-
biltzen da.

• Aztertutako {t1, t2, . . . , tn} segida emanik, {A,B, π} matrizeak estimatzea.
Horretarako, egiantz handieneko metodoa erabiltzen da.

HMM -en atzean, matematika eta teoria sakon asko dago hemen aztertuko ez
dena, ez delako lan honen helburua. Hala ere, interesaturik dagoen irakurlearen-
tzat, [29] artikulua eta [4] testuliburua oso erabilgarriak izan daitezke gai honetan
gehiago sakontzeko. Bertan, HMM jarraituak ere agertzen dira, hau da, egoerak
diskretuak ez dituzten ereduak. Horiek, are eta konplexuagoak dira baina aplikazio
interesgarriak ditu, kotxe autonomoarena besteak beste.



Kapitulua 4

Sare Neuronal Artifizialak

4.1 Sarrera historikoa

Sare neuronal artifizialak, 1940. hamarkadan hasi ziren aztertzen eta lan ezberdi-
nak aurkezten. Horiek, kalkulu aritmetiko sinpleak egiteko gai ziren, baina mugapen
handiekin. Aurrerapen garrantzitsuak 50. eta 60. hamarkadan etorri ziren, Percep-
tron-aren algoritmoarekin (neurona baten funtzioa imitatzen saiatzen dena), sare
neuronal artifizialen aitzindaria. Algoritmo honen berritasun nabaria, parametro
egokiak bere kabuz aukeratzeko gai zela izan zen. Irudia 4.1-n ikus daitekeen bezala,
sarrerako datuak klase bitar batean daudela suposatuko da (irudiko kasuan berdea
edo gorria) eta helburua puntu horiek hiperplano baten bidez sailkatzea dela. Horre-
tarako, algoritmoa W = (w1, . . . , wn) pisuak zuzentzen joaten da iterazio bakoitzeko
helburua lortzen duen arte (posible den kasuetan).

Irudia 4.1: Ezkerrean, Perceptron-aren eskema agertzen da eta eskuinean berriz, algo-
ritmoaren prozesua hiperplano egokia aukeratzen duen arte.

Aurrerapen horiekin batera ordea, 60. eta 70. hamarkadetan alde batera utzi
ziren sare neuronal artifizialen ikerketak, batik bat urte horietako ordenagailuen gai-
tasuna urria zelako eta ez zegoelako sareak entrenatzeko algoritmo egokirik. Hori
dena ordea, 1986. urtetik aurrera aldatu zen, backpropagation edo atzerako he-
dapenaren algoritmoarekin. Algoritmo horrek, sare neuronalei ikasteko edo pisu
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egokiak aukeratzeko gaitasuna ematen dio era automatikoan. Ordutik hona, haz-
kunde eta garapen oso handia izan du (eta izaten ari da) sare neuronalen arloak,
gaitasun ia mugagabeak dituela erakusten ari baita.

4.2 Ideia nagusiak

Sare neuronal artifizialen ideia, gure burmuinean gertatzen diren prozesuak imita-
tzea edo emulatzea da, eskema eraikitzeko orduan batik bat. Era sinplean azaltzeko,
Irudia 4.2 begira daiteke. Bertan, zirkuluak neuronak adierazteko erabiltzen dira
eta geziak aldiz, beraien arteko loturentzako. Kasu sinple horretan, neurona ba-
koitzak bere ezkerrean dauden neuronenganako dependentzia osoa adierazten du,
horien arabera aktibatuko dira edo ez.

Irudia 4.2: Sare neuronal artifizial baten oinarrizko eskema.

Demagun, Irudia 4.2-en oinarritzen jarraituz, honako kasua aztertu behar dela:
azken 50 urteetan Donostian saltzen jarri diren pisuen datuak:

• Salmenta prezioa

• Metro karratu kopurua (m2)

• Pisuaren urte kopurua

• Pisua 2 hilabetetan saldu den edo ez adierazten duen aldagai dikotomiko bat

Suposa dezagun, helburua lehenengo 3 aldagaiekin pisua 2 hilabetetan saldu
den edo ez adierazteko gai den sarea sortzea nahi dela (1. kapituluan aztertutako
sailkapen metodo bat bezala ikus daiteke).

Sare neuronalaren prozesuak honako pauso hauek ditu:

• X ∈ R1×3 sarrerako datuak (input layer-a: prezioa, m2-ak eta urte kopurua)
hurrengo geruzara (hidden layer 1-era) pasatu matrize biderketa baten bidez:

X ·M1 = H ′1 non M1 ∈ R3×4 eta H ′1 ∈ R1×4
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• Behin H ′1 lortutakoan, aktibazio funtzio1 bat aplikatzen zaio H ′1-ko zenba-
kiak 0 edo 1en bilakatzeko (neuronak aktibatzeko edo aktibatu gabe uzteko):

f(H ′1) = H1 non H1 ∈ R1×4

• H1 hidden layer 1-etik hurrengo geruzara pasatu (hidden layer 2-ra) ma-
trize biderketa baten bidez:

H1 ·M2 = H ′2 non M2 ∈ R4×4 eta H ′2 ∈ R1×4

• Behin H ′2 lortutakoan, aktibazio funtzio bat aplikatzen zaio H ′2-ko zenbakiak
0 edo 1en bilakatzeko (neuronak aktibatzeko edo aktibatu gabe uzteko):

g(H ′2) = H2 non H2 ∈ R1×4

• H2 hidden layer 2-tik amaierako geruzara pasatu (output layer-era) ma-
trize biderketa baten bidez:

H2 ·M3 = y′ non M3 ∈ R4×1 eta y′ ∈ R

• Azkenik y′ lortutakoan, aktibazio funtzio bat aplikatzen zaio y′ zenbakia 0
edo 1en bilakatzeko (pisua 2 hilabetetan saldu da edo ez):

h(y′) = y non y ∈ {0, 1}

4.3 Ikasketa prozesua

Azaldu berri den prozesuan M1, M2 eta M3 matrizeak agertu dira, baina ez da
adierazi nondik lortu diren matrize horien balioak. Sarearen helburu nagusia matrize
horien balioak lortzea da hain zuzen ere, matrize horien balio egokiak lortuz gero
irteerako emaitza ona edo txarra izango delako. Atal honetako sarreran agertu den
bezala, Mi matrize horien balioak era egokian aukeratzeko erabiltzen den metodoa
edo algoritmoa backpropagation edo atzerako hedapena da. Bertan, deribatuak
erabiltzen dira errorea minimizatzeko.

Hemen ez dira azalduko metodoaren atzean dauden matematikak eta xehe-
tasunak, ez delako koaderno honen helburua, nahiz eta interesaturik dagoen
irakurleak sare neuronal artifizialen inguruko ia edozein liburutan aurki dezake,
besteak beste [13,21] liburuetan. Hortaz gain, Andrej Karpathy-k, Tesla enpresako
AI saileko zuzendariak besteak beste, bideo oso interesgarri bat du interneten
backpropagation metodoa azaltzen:

1Aktibazio funtzio erabilienak: sigmoide funtzioa, arku tangente funtzioa
eta ReLU funtzioak dira. https://medium.com/the-theory-of-everything/

understanding-activation-functions-in-neural-networks-9491262884e0

https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0
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https://www.youtube.com/watch?v=59Hbtz7XgjM

Ondorioz, sare neuronalen ikasketa prozesua Irudia 4.3-eko prozesua behin eta
berriro errepikatuz egiten da. Alde batetik, sarrerako datuak sartzen dira eta M1,
M2, M3 matrizeekin irteerako emaitza lortzen da. Lortutako emaitza ondo baldin
badago, ez dira Mi matrizeen balioak aldatzen eta lortutako emaitza okerra baldin
bada, Mi matrizeen balioak zuzentzen dira backpropagation erabiliz.

Irudia 4.3: Sare neuronal artifizial baten oinarrizko eskema.

4.4 Abantailak eta Desabantailak

Sare neuronal artifizialek garrantzia handia hartu dute azken urteetan, izan ere
momentu oro aplikazio berriak azaltzen baitira eta oraindik ez zaiolako mugarik
aurkitu. Supervised Learning-eko erregresio zein sailkapen ereduak sortzeko gai
dira, baita Unsupervised Learning-en ikusitako datuen dimentsioa murrizteko ere
(autoencoder deritzona). Bestalde, metodo gehientsuenentzat oso konplexuak diren
lanak egiteko gai dira: irudien sailkapena, soinuen identifikazioa, itzulpengintza...

Hala ere, desabantaila nabari batzuk ere badituzte. Alde batetik, teoria gutxi
garatu da hauen inguruan, lortutako aplikazio eta emaitza gehienak proba desber-
dinen bidez eman dira. Ez dago teoriarik geruza kopurua aukeratzeko ezta neurona
kopurua ere ez, aurki daitekeen bakarra gomendioak dira, beste kasu batzuetan fun-
tzionatu izan duelako. Bestalde, lortzen diren ereduak kutxa beltzak direla esan izan
da, ereduaren nondik norakoak jakitea kasu askotan ezinezkoa delako. Beste era
batean esanda, emaitza onak eman ditzakeen arren, gehienetan ezingo da jakin nola
egiten dituen sailkapenak ezta estimazioak.

https://www.youtube.com/watch?v=59Hbtz7XgjM
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Ensemble methods

Ensemble methods-en helburua, eredu anitz ezberdinak sortzea da eta eredu horien
konbinazioaren bitartez hobeak diren emaitzak lortzeko. Decision trees-en kasuan
adibidez, askotan erabiltzen dira metodo hauek emaitzak hobetzeko. Decision trees-
en algoritmoa orokorrean erraza eta azkarra da eta propietate hori aprobetxatuz,
zuhaitz desberdin asko sortzen dira. Horien arteko konbinazioa erabiliz eredu hobeak
eta sendoagoak sortzeko1.

Oro har, 2 familiatan bereizten dira metodo horiek:

• Averaging methods edo Bagging methods-en, estimatzaile desberdinak eratzen
dira era independentean lehenik eta beraien arteko batez bestekoa kalkulatu
ondoren. Batez bestekoa egiterakoan, lortutako estimatzaile berria hobea
izango da orokorrean, alborapena txikitzen delako.

• Boosting methods-en aldiz, estimatzaileak era sekuentzial baten eraikitzen
dira, pauso bakoitzean estimatzaile berriaren alborapena hobetzen saiatzen
delarik.

5.1 Bagging methods

Kapitulu honetako sarreran esan bezala, metodo honetan, sarrerako datuekin hain-
bat eredu sortzen dira lehenik eta horien batez besteko eredua sortzen da ondoren,
propietate hobeak izango dituenak. Ondoren, algoritmoaren ideia nagusiak azalduko
dira:

• Lehenik eta behin n eta M balioak aukeratzen dira. M balioa, sortuko diren
lagin kopurua izango da eta n, eredu horiek sortzeko erabiliko diren elementu
kopurua.

• Hurrengo pausua laginak sortzea da. M lagin sortuko dira eta lagin bakoi-
tzerako n elementu aukeratuko dira sarrerako datuetatik. n elementu horiek
zoriz aukeratuko dira eta lagin bakoitzerako ezberdinak izango dira.

1Netflix Competition-en [7] adibidez , collaborative filtering algoritmo indartsu bat egiteko,
ensemble methods erabili zuten.
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• BehinM laginak sortu direnean, lagin bakoitzerako eredu bat sortzen da erabili
nahi den metodoarekin (erregresio edo sailkapenekoa).

• Azkenik, eredu finala aurreko ereduen batez bestekoa izango da. Sailkape-
neko kasuan, batez bestekoa izan beharrean, puntu baten klasea, sortutako
ereduetan emaitza positibo gehien dituena izango da.

Metodo hau erabiliz lortzen diren laginek ordea, sarritan korrelazioa izango dute
beraien artean eta horrek amaierako ereduaren kalitatean eragin negatiboa izango
du. Korrelazio hori kentzeko edo gutxitzeko, Random Trees metodoa erabiltzen da.

Random Trees

Ikusitako algoritmoarekiko duen aldaketa, aldagaien aukeraketan datza. Sarre-
rako datuak, k aldagai badituzte, lagina aukeratzeko orduan laginaren d aldagai
bakarrik aukeratzen dira zoriz. Normalean, d ≈

√
k hartzen da. Horrek, laginen

arteko korrelazioa jaisten du eta ondorioz emaitza hobeak lortzen dira.

Datuak 2. Lagina

1. Lagina

3. Lagina

1. Eredua

2. Eredua

3. Eredua

BB Eredua

Irudia 5.1: Bagging metodoaren eskema: sarrerako datuetatik tamainu berdineko laginak
hartzen dira, lagin horien ereduak sortu eta azkenik eredu horien batez besteko eredu bat
sortzen da.

5.2 Boosting methods

Metodo honen funtsa, eredu sinpleetatik abiatuz, era sekuentzial batean eredu hori
hobetzen joatea da. Sailkapen metodoentzako bakarrik balio du. Hobetze hori, ere-
duak gaizki sailkatutako datuei pisu handiago ematen egiten da. Hurrengo lerroetan,
AdaBoost (Adaptive Boosting) algoritmoaren ideia nagusiak azaltzen dira2:

2Hurrengo bideoan, AdaBoost algoritmoaren funtzionamendua azaltzen da gra-
fikoki: https://www.coursera.org/learn/ml-classification/lecture/um0cX/

example-of-adaboost-in-action

https://www.coursera.org/learn/ml-classification/lecture/um0cX/example-of-adaboost-in-action
https://www.coursera.org/learn/ml-classification/lecture/um0cX/example-of-adaboost-in-action
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• Bagging-arekin bezala, lehenik eta behin n eta M balioak aukeratzen dira.
M balioa, sortuko diren lagin kopurua izango da eta n, eredu horiek sortzeko
erabiliko diren elementu kopurua.

• Ondoren, n tamainako zorizko lagin bakun bat ateratzen da. Pauso hau,
lehengo aldiz bakarrik egiten da, hurrengo pausuetan, lagina ateratzeko or-
duan lagin horretako elementu batzuk probabilitate handiagoa izango dutelako
emango zaien pisuaren arabera.

• Lagin horri, sailkapen metodoarekin eredu bat esleituko zaio.

• Eredu horretan, gaizki sailkatutako elementuak zenbatuko dira eta elementu
horiei pisu handiagoa emango zaie, probabilitate handiagoa izan dezaten hu-
rrengo laginean agertzeko.

• Beste n tamainako lagin bat ateratzen da, lortu den banaketa probabilistiko
berriarekin eta aurreko prozesu berdina egiten da M aldiz.

• Azkenik, prozesua M aldiz errepikatu ostean, lortutako M eredu horien arteko
batez besteko haztatuaren bidez (algoritmoan lortutako pisuak erabiliz), nahi
den eredu finala lortuko da.

Datuak 1. Lagina 2. Lagina 3. Lagina

1. Eredua

α1

2. Eredua

α2

3. Eredua

α3

BB Eredua

Irudia 5.2: AdaBoost metodoaren eskema. αi balioak, ereduetatik lortzen diren pisuari
dagokie, hurrengo lagina eratzeko eta eredu finalerako balioko dutenak.

Algoritmo honek, edozein sailkapen metodorako balio du eta esan bezala, horren
emaitzak hobetzen eta errorea txikitzen laguntzen du. Hala ere, oro har metodo
sinpleei aplikatu izan zaie, Decision trees modukoak, kostu konputazional baxua
dutelako.



Atala II

Datuekin lanean
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Sarrera
Atal honetan, serie denboralen clustering-aren inguruan egindako lana eta lortu-

tako emaitzak azalduko dira, beka honen helburu nagusia izan delarik. Horretarako,
EAEko hotel eta pentsioen eguneko prezioak jaso dira web plataforma batetik.
Datuak web scraping metodo ezberdinak erabiliz lortu dira eta web orrialdearen
egitura ezagutzen joan den ahala, datuen kalitatea ere hobea izan da.

Eguneko prezioak finkatzeko, egun bakoitzeko 120 kontsulta egin dira pla-
taforman. Web scraping-eko programak, EAEko hotel eta pentsio bakoitzeko
hurrengo 120 egunetako prezioak jasotzen ditu. Adibide bezala, 2018ko urtarrilaren
1ean, programak urtarrilaren 1etik maiatzaren 1erako egun guztietako prezioak
jasotzeko eskaera egin zuen hotel eta pentsio bakoitzeko. Hori dela eta, kasurik
onenean hotel eta pentsio bakoitzak urteko egun bakoitzerako 120 prezio izango ditu.

Egoera hori ordea ia ezinezkoa da, bidean oztopo asko baitaude. Alde batetik,
ostatu guztiek ez dute web bidez erreserba egiteko aukera ematen. Lan honetarako
adibidez, lortutako ostatuen kobertura %75 ingurukoa izan da. Bestalde, arazo
desberdinak gerta daitezke datuak jasotzen dituen programan (ezusteko erroreren
bat, web orrialdearen egituran aldaketak, ostatua beteta/itxita egotea...) edota
plataformako orrialdean bertan.

Behin 120 eskaera horiek egin ondoren, egun bakoitzeko prezio adierazgarria
aukeratzeko prozesua dator. Azterketa hori, EHUko ikerketa lan moduan utzi
da eta bitartean, lan honetarako prezio guztien mediana hartzea erabaki da,
zentro-neurri bat delako eta balio arraroak kanpoan uzten dituelako.

Jasotako datu horiek, Eustat-eko Establezimendu Turistiko Hartzaileen Inkes-
tarekin fusionatu dira, hotel/pentsioen informazio gehigarria batzeko datuetara.

Aurrepauso horien ondoren, datuekin lan egiteko R [28] programazio-lengoaia
erabiltzea erabaki da. Arrazoi nagusiak, doako programazio-lengoaia dela, Machine
Learning munduan azken urteetan indar handia hartu duela (Python programazio-
lengoaiarekin batera) eta estatistikara bideratuta dagoela.

Lan honen prozesua 3 zati garrantzitsutan banatu da:

• Outlier-ak serie denboraletan

• Inputazioa serie denboraletan

• Serie denboralen Clustering-a

Emaitzak irudikatzeko erabilitako R-ko pakete garrantzitsuenak berriz, shiny [6],
plotly [32] eta leaflet [8] izan dira.



Kapitulua 6

Outlier-ak serie denboraletan

Analisi desberdinak egiterako orduan, logikoa den bezala emaitzek datuekiko depen-
dentzia oso handia izaten dute. Hori dela eta, jasotako datuak gaizki jaso baldin
badira edo erroreak baldin badituzte, analisietatik ateratako emaitzak eta ondorioak
fidagarritasun urrikoak izan daitezke. Gure kasua ez da salbuespen bat eta horre-
gatik gure serie denboraletako balio arraroak eta outlier-ak detektatzeko metodo
desberdinak testatu ditugu eta gure nahietara egokitzen den algoritmo bat sortu.

Hasieran, tsoutliers [9] eta outliers [19] paketeak erabili eta probatu zi-
ren, baina berehala ikusi zen ez zirela erabilgarriak gure kasurako (ez behintzat era
zuzenean). Pakete horiek eskaintzen duten funtzioen bidez, serie denboralak banan-
banan aztertzen dira eta ondorioz, egun berezietako prezio altuak outlier bezala
detektatzen dituzte. tsoutliers-en, egutegi efektuak zehaztu daitezke (astebukae-
rak, jai-egunak, aste santua...), baina hala ere horrekin ez da beti nahikoa izaten,
ekitaldi bereziak egoten baitira.

Irudia 6.1 aztertzen baldin bada, azaroak 11an balio arraro bat dagoela ikus
daiteke. Egutegiari dagokionez larunbata izan zen eta EAEn ez zen zubi berezirik
izan. Hala ere, Donostiako pentsio eta hotel gehienetan patroi berdina ematen
denez Donostian izan zen ekitaldi berezi bat bilatu zen, kasu honetan Behobia-San
Sebastián erdi-maratoia.

Ondorio bezala, gure serie denboralak beraien artean konparatzeko beharra ze-
goela ikusi zen. Anomalia edo outlier izatearen diferentzia, balio arraroa beste
hotel/pentsioetan errepikatzen den edo ez delako.

6.1 Outlier-ak detektatzeko algoritmoa eraikitzen

Atal honen sarreran esan bezala, outlier-ak detektatzeko ostatu ezberdinen arteko
konparaketa egitea beharrezkoa dela kontsideratu da. Ideia nagusia serie denbora-
letako balio arraroak detektatzea da aurrenekoz eta outlier-a edo anomalia bat den
erabakitzea ondoren serie denboralen arteko konparaketaren bidez.

Azterketa hori aurrera eramateko, prozesua 4 zatitan banatu da nagusiki:
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Irudia 6.1: Donostiako pentsio baten prezioen serie denborala. Azaroak 11an anomalia
bat dagoela ikus daiteke astebukaera horretan Behobia-San Sebastián erdi-maratoia izan
zelako.

Serie denboralak hileka bildu

Etorkizunean, iristen doazen datuak era automatikoan depuratzea nahi denez,
hileka aztertzea erabaki da serie denboraletako outlier-ak. Gainera, outlier-ak az-
tertzeko orokorrean ez da erabilgarria hilabete ezberdinetako datuak konparatzea,
urteko sasoi bakoitzak joera oso desberdinak dituelako.

Outlier minimoak ezabatu

Behin datuak hileka multzokatuta daudenean, hurrengo pausua outlier minimoak
ezabatzea da. Outlier minimoak ezabatzeko erabili den ideia oso sinplea da: hileka,
hotel/pentsio bakoitzeko prezioei test bat pasatu eta test horren arabera balioa
ezabatzeko erabakia hartu. Detekziorako erabili den testa Grubbs-en [14] metodoan
oinarritzen da, outliers paketean aurkitzen dena. Metodo honen bidez outlier-ak
multzoka aztertzen dira eta denbora faktorea ezabatzen da, hau da, berdin du prezio
horiek zein egunetan eman diren.

Outlier minimoen kasuan, maximoekin ez bezala ez da patroirik ematen, hau
da, ez dira prezio baxu guztiak egun gutxi batzuetan pilatzen. Izan ere, orokorrean
prezio baxuak altuak baino arruntagoak dira, beste era batean esanda, prezioek
orokorrean egonkortasun bat izaten dute hilabetean zehar eta egonkortasun hori
gehienetan prezio maximoekin hausten da.

Ez da aipatu gabe utzi behar Grubbs-en testak estatistiko batzuk itzultzen di-
tuela eta horiekin loturik p-balio bat. Lanetako bat p-balio hori zehaztea da, outlier-
a zer den erabakitzeko. Horretarako, begiz aztertu dira outlier minimoak lehen 5
hilabeteetarako eta hobekien sailkatzen dituen p-balioarekin geratu gara.

Azkenik, algoritmoak detektaturiko balioak ezabatu dira eta ezabatu ondoren,
ostatu bakoitzari bere hileko prezio minimoa esleitu zaio egun horietan.
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Prezioak eskalaz aldatzen

Minimoen azterketarekin amaitu ondoren, maximoena dator eta atal honen sa-
rreran esan bezala, lan hori egiteko ostatuen arteko konparaketa egitea komeni da.
Konparaketarako, erabiltzen den eskala oso garrantzitsua da, ezin baita luxuzko
hotel bat barrualdeko izar bateko hotel batekin konparatu, ez behintzat prezio ab-
solututan. Horregatik, hurrengo eskala aldaketa egin da prezioetan:

zi =
xi

min(x)
· 100 (6.1)

non

• x: prezioen serie denborala (hileka)

• xi: i. eguneko prezioa

• zi: i. eguneko prezio berreskalatua

Eskala aldaketa horren bitartez, hotel/pentsio batek hilabetean zehar ehuneko-
tan izandako igoera neurtzea nahi da. Adibide bezala, hurrengo bektorea berreska-
latuko da:

(70, 105, 70, 140, 210) −→ (100, 150, 100, 200, 300)

100 balioa dutenak, hilabeteko prezio minimoa adierazten dute eta beste ba-
lioek igoera ehunekotan, hau da, 200 balioak prezioa bikoiztu dela adierazten du
(minimoarekin alderatuz) eta 150 balioak prezio minimoa 1.5-ekin biderkatu dela
(70 ·1.5 = 105). Eskala aldaketa honen bidez prezio aldaketak konparatzea lortu da.

Outlier maximoak ezabatu

Datuen lehen aurreprozesamendua eginik, outlier maximoak detektatzeko 2 az-
terketa egiten dira: hileko azterketa eta eguneko azterketa. Hileko azterketa
minimoen kasuan bezala egiten da, hotel bakoitzaren outlier-ak detektatzen dira
hileka Grubbs metodoaren bitartez. Adibide bezala, Irudia 6.2-n kasu erreal bat
agertzen da. Bertan, Grubbs-testa pasa ondoren outlier bezala sailkatzen dituen 4
puntu ageri dira. Grafikoa ikusita, azaroak 3, 4 eta 25 ez dirudite inondik inola
ere ez outlier-ak, baina kasu berezi honetan, gainontzeko prezio guztiak konstanteak
direnez, horrela sailkatzen ditu.

Lehen pausu horren ondoren, bigarren pausua eguneko azterketa da. Bigarren
pausu honetan ere Grubbs-en testa pasatzen da, baina egun bakoitzeko pasatzen da
eta beste ostatuekin konparatuz. Azaroko adibidearekin jarraitzen baldin bada,
kasu horretan 30 aldiz pasatzen da Grubbs-en testa, hileko egun bakoitzeko. Egun
bakoitzean, hotel desberdinen prezioak kontsideratzen dira ((6.1) formularen bidez
berreskalatutako prezioak) eta multzo horren gainean aplikatzen da testa. Azaroko
emaitzekin lortutako outlier-ak Irudia 6.3-n agertzen dira.

Kontutan izan behar da, eguneko azterketa egiterakoan hotel eta pentsioak lu-
rralde historikoaren arabera multzokatu direla. Era horretan, Gasteizen azaroaren
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Irudia 6.2: Grafiko honetan, azaroko hilabetean hotel bati Grubbs-en testa aplikatu on-
doren lortutako 4 outlier-ak agertzen dira gorriz borobildurik.

Irudia 6.3: Azaroko egun bakoitzeko outlier-ak agertzen dira gorriz borobildurik. Ezke-
rreko grafikoan azaroak 11ko eguna agertzen da, egun horretan testa pasa ondoren outlier
kontsideratu diren 2 puntuak borobilduta daudelarik.

11an eman zitekeen balio arraro bat Donostiako balio arraroekin konparatzea ekidi-
ten da, hiriburu eta lurralde historiko bakoitzak joera ezberdina duelako.

Bi azterketa edo pausu horien ondoren, hurrengo erabakia hartzen da:

• Balioren bat 2 azterketetan outlier-a baldin bada =⇒ OUTLIER

• Kontrako kasuan =⇒ EZ DA OUTLIER

Adibideko kasuan, ez da outlier kontsideratuko balio bat ere ez, izan ere ikus
daitekeen bezala azaroak 11n igoera handiak eman ziren ostatu askotan eta ondorioz
ez dira 2 baldintzak bete. Minimoen kasuan bezala, Grubbs-en testerako p-balioa
finkatzeko begiz outlier-ak identifikatu dira 5 hilabetetarako eta hobekien sailkatzen
dituen balioa aukeratu da. Ezabatutako outlier-ei, hilabeteko prezioaren 3. koartila
esleitu zaie.
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Laburbiltzeko, hurrengo diagraman algoritmoan emandako pausuak agertzen
dira:

Datu Originalak Datuak Hileka Outlier Minimoak

Datuak ProzesatutaOutlier-ak Egunka

Outlier-ak Hilabeteka

Bietan Outlier?

Outlier Maximoak

Grubbs

Berreskalatu

Grubbs
Bai

Grubbs
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Inputazioa serie denboraletan

Serie denboraletan, arrazoi desberdinak direla medio, sarritan balio galduak ager-
tzen dira. Balio galdu horiek, batzuetan interesgarriak izango dira bere baitan,
informazio gehigarri bat eskaintzen dutelako, baina besteetan aldiz arazo bat izango
da eta balio horiek berreskuratzea nahiko da.

Gure kasuan, balio galduek esanahi desberdina izan dezakete: hotela itxita ego-
tea, hotela beteta egotea, datua jasotzerako orduan arazoak edo erroreak izatea...
Itxitako kasuak erraz identifika ditzakegu, inkesta bidez heltzen zaigulako informazio
hori. Betetako kasuetan edota arazo teknikoak izandakoetan, konponbide posible
bat datuak inputatzea izaten da.

Serie denboralen inputazioari dagokionez, R-k [28] imputeTS [26] paketea eskain-
tzen du. Bertan, hainbat metodo agertzen dira beharren arabera bata edo bestea
erabiltzeko. Gure kasu partikularrean, datuek aldizkakotasun nabaria dute, hau
da, orokorrean prezioak beti igotzen dira ostiral eta larunbatetan. Kasu horie-
tarako, aldizkakotasun nabaria duten kasuetarako, imputeTS-ko dokumentazioan
hurrengo funtzioak erabiltzea gomendatzen dira, emaitza hoberenak ematen dituz-
telako gehientsuenetan: na.seasplit, na.seadec eta na.kalman.

7.1 na.seasplit

Funtzio honetan, hainbat pauso daude inputazio prozesuan. Funtzioari aurresan
egin behar zaio sartutako serie denboralek duten aldizkakotasuna. Gure kasuan
astebeteko aldizkakotasuna dugu, beraz, funtzioaren input-a honakoa izan beharko
da:

ts(x, frequency = 7)

non x gure sarrerako datuak diren, hau da, hotel bateko prezioak. Hasteko, funtzioak
serie denboral originaletik, 7 serie denboral aterako ditu, asteko egun bakoitzeko bat
(ikusi Irudia 7.1 adibide modura)

Behin gure serie denborala 7 serie denboraletan banatutakoan, horietako bakoi-
tzari inputazio metodo bat aplikatzen zaio (imputeTS paketearen barruan hainbat
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Irudia 7.1: Lehenengo irudia, balio galduak dituen serie denboral baten adibide bat da.
Puntu laranjak, astelehenak dira. Beheko irudian asteleheneko datuak bakarrik ageri dira,
urteko astearen arabera.

aukera daude: interpolazio bidez, ARIMA bidez, Basic Structural Model bidez, me-
dia bidez...).

7.2 na.seadec

Metodo honetan ere, hainbat pausu diferente daude eta metodoaren abantaila apro-
betxatzeko, aldizkakotasuna adierazi behar zaio. Gure kasuan:

ts(x, frequency = 7)

Hasteko, seriea era sinple baten inputatzen da interpolazio lineala erabiliz
na.interpolation funtzioarekin. Hutsuneak bete ondoren, seriearen aldizkakota-
suna kentzen zaio serie denboralari stl1 funtzioaren bidez. Behin aldizkakotasuna
ateratakoan, geratzen zaiguna inputatzen da nahi den metodo bat erabiliz (imputeTS
paketearen barruan hainbat aukera daude: interpolazio bidez, ARIMA bidez, Basic

1stl funtzioa R-n barneratuta dagoen funtzio bat da. Serie denboralen deskonposaketa egiten
du: trend, seasonal part and remainder.
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Structural Model bidez, media bidez...), eta azkenik inputatu ondoren, aldizkakota-
suna gehitzen zaio serieari.

Irudia 7.2: Ezkerreko irudian, inputatu nahi den serie denborala agertzen da. Eskuinean
berriz, serie denboral horri na.interpolation funtzioa aplikatuta eta aldizkakotasuna
kenduta ageri da.

7.3 na.kalman

Funtzio honek, modelizazio bidez inputatzen ditu balio galduak. Serie denborala-
ren eredu desberdinak sar diezazkiogu beharren arabera, baina funtzio honen bar-
nean 2 modelizazio daude barneraturik: auto.arima2 eta StructTS3. Lehenengoa
forecast [16] paketearen barruan dago definiturik eta bigarrena R lengoaiak du bere
barnean.

Demagun, gauzak sinplifikatzeko hurrengo eredua lortu dugula:

yt = a · yt−1 + εt, εt ∼ N(0, σ)

hau da, gure serie denboraleko puntu bakoitzak bere aurreko puntuaren dependen-
tzia bakarrik duela. Hori horrela izanik, na.kalman funtzioak modelo hori marrazten
du Kalman-en iragazkia4 erabiliz. Funtsean, Kalman-en iragazkiak yt balioak au-
keratzeko orduan, εt zarata egokia aukeratzeko gai da.

2ARIMA ereduei buruz gehiago jakitea nahi izanez gero, [31] liburuko 3. atalean agertzen dira
metodoaren nondik norakoak.

3Basic Structural Model (BSM) eta State-Space ereduen inguruko informazio gehiago [31]
libruko 6. atalean aurki daiteke.

4 [31] liburuaren 6.2 atalean aurki daitezke Kalman-en iragazkiaren nondik norakoak.
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7.4 Inputatzeko Funtzioaren Aukeraketa

Behin imputeTS-ko dokumentuak gomendatzen dituen funtzioak aztertu eta ulertu
ondoren, horietako bat aukeratu behar da gure beharrei hobekien egokitzen dena.
Horretarako, gure serie denboral osoak hartu ditugu, hau da, 2017ko abuztutik
2017ko abendura bitartean 5 balio edo gutxiago falta dituzten serie denboralak (150
inguru) eta horietan testatu ditugu metodoak.

Testatzeko, serie denboral horiei 15-20 puntu inguru kendu dizkiegu zoriz, as-
tebukaerei pisu handiagoa emanez (astebukaeretan balio galdu gehiago daudelako,
ikusi Irudia 7.3) eta ondoren, metodo desberdinen bitartez inputatu ditugu. Sortu-
tako errorea neurtzeko batez besteko errore koadratikoa erabili da.

Irudia 7.3: Irudi honetan ikus daitekeenez, 2017ko abuztutik 2017ko abendura bitarteko
balio galduak astebukaeretan pilatzen dira.

Test hori 20 aldiz errepikatu ondoren, Irudia 7.4 lortu da. Berdina egin da
web-etik jasotako prezio minimoekin5 (aldizkakotasun nabariagoa erakusten dutela
jakinik) eta emaitzak Irudia 7.6-n ikus daitezke.

Emaitza horiekin eskuan, na.seadec funtzioaren barruan, kalman algoritmoa
erabiltzea erabaki dugu, hau da:

na.seadec(ts(x, frequency = 7), algorithm = "kalman")

5Gogoratu hotelen eguneko prezioa zehazterako orduan, 120 egun ezberdinetan jasotako pre-
zioak kontsideratu direla eta horien medianarekin egin direla azterketak. Inputazio metodoa au-
keratzeko garaian, 120 prezio horien minimoak ere kontsideratu dira, aldizkakotasun handiagoa
agertzen dutelako.
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Irudia 7.4: Metodo desberdinekin sortutako inputazio errorea 20 test desberdinen on-
doren. Split=na.seasplit, Decomposed=na.seadec eta Kalman=na.kalman. Beheko
irudian errore gutxien sortzen duten metodoak agertzen dira.

Irudia 7.5: 20 test desberdinen egin ondoren errore txikiena eman dutenak.
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Irudia 7.6: 20 test desberdinetan izandako errorea prezio minimoak erabiliz.
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Serie Denboralen Clustering-a

Beka honetako helburu nagusienetako bat, hau zen hain zuzen ere, prezioen serie
denboralen clustering-a egitea. Horretarako, R-ko [28] hurrengo paketeak erabili
dira: TSdist [25] eta TSclust [24]. Bi pakete horietan, serie denboralen arteko dis-
tantzia desberdinak ageri dira, kasuaren arabera erabiltzailearen beharrei hobekien
egokitzen dena aukeratzeko. Gure analisirako, garrantzia eman zaio prezioen igoe-
rak eta jaitsierak data berdinetan emateari, ez zelako nahi abuztuan prezio altuak
zituen ostatu bat urrian prezio altuak zituen beste batekin konparatzerik, ondorioz
DTW [12] (Dynamic Time Warping) bezalako distantziak ezabatu dira analisirako.

Batik bat probatu diren distantziak Lp distantziak (Manhattan eta Euklidearra)
eta serie denboralen ezaugarrietatik eratorritako distantziak (korrelazio/autokorre-
lazio bidezko distantziak, Fourier-en koefizienteen bidezko distantziak, ARMA/A-
RIMA ereduetan oinarritutako distantziak...) dira. Gehientsuenekin clustering an-
tzekoetara iritsi gara eta ondorioz, ulerterrazena den distantzia hartzea erabaki da:
distantzia euklidearra.

8.1 Datuak preparatzen

TSdist eta TSclust paketeetan, serie denboralak era numerikoan sartu behar dira
(matrize bezala, lista bezala, data.frame bezala, ts objektu bezala...), ondorioz
gure hasierako data.frame-a eraldatu dugu lan hori egin ahal izateko. Eralda-
keta hori egiteko erabili den funtzioa reshape2 [34] paketeko dcast funtzioa izan
da. Funtzio horren bidez, hasierako data.frame-etik 3 aldagai hartu dira: IZENA,
MEDIAN eta FECHA. Behin 3 aldagaiak aukeratuta, data.frame berria sortu da non
zutabeak FECHA eta hotel/pentsioen izenak diren.

Hori lortzeko erabili den kodea hurrengoa da:

dcast(df[,c("FECHA","IZENA","MEDIAN")],FECHA∼IZENA ,value.var="MEDIAN")

Behin taula lortutakoan, hurrengo pausua balore galduei konponbide bat ematea
izan da. Irudia 8.1-n ikus daitekeen bezala, taula sortzean NA balio galduak lortu dira
arrazoi ezberdinengatik (egun horretako prezioa ezin izan delako lortu, itxita egon
delako...) eta hori arazo bat da TSclust eta TSdist-eko funtzioek serie denboral
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Irudia 8.1: dcast funtzioa erabili ondoren lortutako data.frame-aren adibidea.

osoak behar dituztelako, hau da, balio galdurik gabekoak.

Balio galduentzako hurrengo neurriak hartu dira:

• 150 balio baino gutxiago duten (5 hilabeteko datuak baino gutxiago) hotel/-
pentsioak ezabatu egin dira analisitik.

• Itxitako egunei, irekitako azken egunaren prezio berdina esleitu zaie na.locf

funtzioaren bidez (imputeTS paketea erabiliz).

• Gainontzeko balio galduak, 7.4 atalean ikusitako na.seadec funtzioaren bidez
inputatu dira, kalman algoritmoaren bidez.

Balio galduak inputatu ondoren, bi clustering desberdin sortu dira TSclust eta
TSdist paketeen bitartez (prezio absolutuekin eta prezio normalizatuekin) eta beste
clustering mota bat prezioen aldakortasuna aztertzeko.

8.2 Clustering prezio absolutuekin

Lehenengo clustering honetan, prezio absolutuen bidez taldekatu dira ostatuak. Se-
rieak taldekatzeko erabili den distantzia, distantzia euklidearra izan da, besteak
beste, erraza delako azaltzeko eta desio ziren emaitzak lortu direlako. Serieak talde-
katzeko erabili den metodoa pam (Partitioning Around Medoids1) da, cluster [23]
paketekoa, 2.1 ataleko K-means metodoan oinarritzen dena. K-means metodoare-
kin duen diferentzia nabarmena, cluster-eko zentroidea cluster-eko elementu bat izan
behar dela (medoidea) da.

Hortaz aparte, cluster kopurua aukeratzeko silhouette metodoa erabili da (pam al-
goritmoaren bidez lortzen da), 2.1 ataleko ideian oinarrituta dagoena. Silhouette me-

1 [18] Liburuko 2. atalean, algoritmo honen gorabeherak azaltzen dira xehetasun gehiagorekin.
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todoa, cluster-en trinkotasuna neurtzeko erabiltzen da eta i. elementuaren silhouette
balioa honela definitzen da:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(8.1)

non

• a(i): i. elementuak cluster berdinean dauden beste elementuekiko duen ba-
tezbesteko distantzia (taldekatzeko erabilitako distantzia berdina).

• b(i): i. elementuak gertuen duen (eta talde berekoa ez den) cluster-eko ele-
mentu guztiekiko batezbestesko distantzia.

Beraz, silhouette metodoan, elementu bakoitzaren s(i) balioa kalkulatzen da eta
ondoren balio guztien media atera. Emaitza horiekin grafiko bat eratzen da, Irudia
8.2-n ikus daitekeen bezala.

Irudia 8.2: Clustering prezio absolutuekin lortutako Silhouette grafikoa.

Behin grafikoa marraztutakoan, cluster kopurua aukeratzeko era bat jaitsiera
leuntzen hasten den puntua izaten da, kasu honetan 3 puntuan (konturatu grafikoa
2 zenbakitik hasten dela, pam funtzioak ez duelako talde bakar bat osatzen uzten).
Kontutan hartu, silhouette metodoa irizpide bat dela, ez dela talde kopuru zehatz
bat hartzera behartzen duen zerbait. Gure kasuan lehendabizi 3 taldetan banatu
ziren serie denboralak (Irudia 8.3-n talde horien medoideak agertzen dira), baina
informazio gutxi ateratzea lortu zenez beste bi taldekatze ezberdinekin probatu zen:
7 eta 10 cluster-ekoak hain zuzen ere (grafikoan jaitsiera zuten puntuak zirelako).

Azken bi clustering horiek aztertu ondoren, gure serie denboralak 7 taldetan mul-
tzokatzea erabaki zen, talde bakoitzetik informazio interesgarria lortzen zelako eta
10 taldetan banatzerakoan talde batzuk oso antzekoak zirelako (ia bereizi ezinak).
Lortutako emaitzen medoideak Irudia 8.4-n ikus daitezke. Bertan, begi bistaz ikus
daitekeen bezala talde bat besteekiko oso desberdina da, prezio oso altuak dituzten
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Irudia 8.3: Clustering prezio absolutuekin lortutako medoideen grafikoa (3 taldetan mul-
tzokatzean).

hotelekin osatutakoa hain zuzen ere. Hotel oso gutxik osatzen dute talde hori eta
pentsatzekoa den bezala, luxu handikoak dira.

Cluster berezi hori alde batera utziz, beste 3 aztertuko dira xehetasun gehiago-
rekin:

Cluster 5

Talde honetan, hotel eta pentsio garestienak daude (7. cluster-eko luxuzko hote-
lak alde batera utziz gero). Gehienak 4 eta 5 izarreko hotelak dira, espero zitekeen
bezala (4 eta 5 izarreko hotelen %25-a baino gehiago talde honetan aurkitzen da)
eta bigarren talderik txikiena da 22 ostaturekin. Prezio aldetik, 300-180e inguruan
dabiltza. Irudia 8.5-n ikus daitezke talde honen ezaugarri batzuk.

Cluster 4

Hotel/Pentsio hauek prezio absolutuan 130-60e inguruan dabiltza eta oroko-
rrean prezio bariazio handikoak dira, urtaroek eta urteko sasoi desberdinek eragin
handia dutelarik. 90 hotel/pentsio talde honetan daude (EAEko gelen %20 baino
gehiago eskaintzen dutelarik2) eta Donostia eta Donostiako metropolialdean koka-
tzen dira gehientsuenak. Oro har pentsioak dira, 2 izarreko pentsioen %40-a talde
honetan daude eta izar bakarreko pentsioen %25-a baino gehiago ere, Irudia 8.6-n
ikusi daitekeen bezala. Grafiko horietatik beste datu interesgarri bat atera daiteke,
Gipuzkoa eta Bizkaia barrualdean ez dagoela horrelako ostaturik.

Cluster 3

2Portzentaia hori kalkulatzeko orduan, datuak jaso diren 443 ostatuen gela kopuru totaletik
atera da.
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Irudia 8.4: Prezio absolutuekin lortutako cluster-en medoideen grafikoa (7 taldetan mul-
tzokatzean). Linea jarraituak medoideak dira eta ez-jarraituak berriz medoide horien
tendentzia.

Hotel/Pentsio hauek prezio absolutuan 60-50e inguruan dabiltza, prezio mer-
keena dutenak dira eta ez dute prezioa apenas aldatzen urtaroaren arabera. Mer-
keenak direnez, espero den bezala gehienak 3 izar baino gutxiagokoak dira eta oro-
korrean gela gutxi eskaintzen dituzte, hau da, tamainu txikiko ostatuak dira: 104
ostatu daude talde honetan eta gelen %15-a baino gutxiago eskaintzen dute. Errioxa
Arabarrean eta Donostian ez dago ia horrelako ostaturik eta bestalde, Arabako (Gas-
teiz eta Errioxa Arabarra kanpoan utzita) ostatu gehienak, %60-a baino gehiago,
talde honetan daude, Irudia 8.7-n ikus daitekeen bezala.

8.3 Clustering prezio normalizatuekin

Bigarren clustering honetan, prezio normalizatuen bidez taldekatu dira ostatuak.
Erabili den normalizazio metodoa Min-Max metodoa da, hau da, hotel bakoitzaren
prezioak eskalaz aldatu dira: 0 eta 100 bitartera hain zuzen ere. Horretarako ostatu
bakoitzerako erabili den normalizazio formula hurrengoa da:

zi =
xi −min(x)

max(x)−min(x)
· 100 (8.2)

• x: Ostatuaren prezio-bektorea

• xi: Ostatuaren i. eguneko prezioa

• zi: Ostatuaren i. eguneko prezio normalizatua, [0, 100] tartean egongo dena
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Irudia 8.5: Ezkerreko grafikoan 5. cluster-eko medoidea eta bere tendentzia ageri dira,
ikusten denez 200-170e bitartean dabil. Eskuinean berriz ostatuen kategoriak agertzen
dira portzentajetan.

Irudia 8.6: Ezkerreko grafikoan cluster 4-ko ostatuen kategoria agertzen da portzentajetan
eta eskuinekoan berriz estratoka.

Eskala aldaketa hau, hotel/pentsio guztiak era berdin batean konparatzeko egin
da, ondoren beraien tendentzia aztertzeko eta horren arabera sailkatzeko. Irudia 8.8-
n adibide nahiko garbi bat dago. Bertako bi pentsioek prezio dezente ezberdinak
dituzte, baina bien tendentzia oso antzekoa da. Kasu horretan, gure sailkapena
egiterako orduan, bi pentsio horiek talde berdinean egotea esperoko dugu.

Datuekin lanean hastean ordea, arazoak izan ditzakegu (8.2) formula aplikatze-
rako orduan, izan ere max(x) = min(x) kasuetarako indeterminazio bat dugulako.
Kasu horretan, prezio konstantea duten ostatuei irteera bat eman behar zaie eta
kasu honetan 100 balio konstantea esleitu zaie (3 balio ezberdinekin probatu da, 0,
50 eta 100 eta emaitza gustukoenak 100 balioarekin lortu dira). Hortaz gain, pre-
zio aldaketa maximoa 5e-koa edo txikiagoa izan duten ostatu guztiei ere 100 balio
esleitu zaie. Izan ere, 5e-ko aldaketa, aldaketa oso txikia dela kontsideratu da eta
Min-Max normalizazioarekin ostatu horiek oszilazio oso handiak izaten dituzte.

Prezioak behin normalizatuta, aurreko clustering metodo berdina jarraitu dugu
distantzia euklidearraren bidez. Lortutako silhouette grafikoa Irudia 8.9-n ikus dai-
teke. Kasu honetan, era garbiago eta errazago batean ikusten da ebaki puntua
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Irudia 8.7: Ezkerreko grafikoan cluster 3-ko ostatuen kategoria agertzen da portzentajetan
eta eskuinekoan berriz estratoka.

Irudia 8.8: Grafiko honetan, prezio-tarte desberdinetan mugitzen diren bi pentsio ageri
dira. Hala ere, argi ikus daiteke biek duten tendentzia nahiko berdintsua dela.

eta ondorioz 4 talde sortu ditugu (gogoratu lehenengo puntuak 2 cluster adierazten
duela).

4 cluster horiekin lortutako emaitza Irudia 8.10-n ikus daiteke eta nahiko era
errazean desberdintzen dira beraien artean. 4. taldea, aurrerago definitu dugun
bezala prezio konstantea edo ia konstantea duten hotel eta pentsioak dira, barrual-
dean kokatzen direnak eta kategoria baxukoak. Beste taldeak aldiz, sasoiaren ara-
bera prezioak aldatzen joaten dira. Gehien aldatzen dutenak 1. cluster-ean daude
eta gutxien aldatzen dutenak 3. cluster-ean. Azken honetan, prezioaren tenden-
tzian aldaketa gutxi edo ia ezer ere ez jasaten dutenak daude, baina 4. taldekoekin
alderatuz, hauek prezio aldaketak jasaten dituzte urteko egun berezietan edo/eta
astebukaeretan.
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Irudia 8.9: Grafiko honetan silhouette metodo bidez lortutako emaitzak ikus daitezke.
Bertan, 3 eta 4 cluster-ekin silhouette balioa asko txikitzen dela ikusten da eta bertatik
aurrera hobekuntza oso txikia dela.

Cluster 1

Cluster honetan aurkitzen dira prezioaren tendentzian (prezio normalizatuetan)
aldaketa handienak pairatzen dituzten hotel eta pentsioak. Irudia 8.11 aztertzen
bada, pentsioek eta 4 izarreko hotelek pisu handia dutela ikus daiteke talde ho-
netan. Bestalde, Donostiako ostatuen ia %70-a era honetakoak dira. Gipuzkoa
kostaldeko, Donostiako metropolialdeko eta Bilboko ostatuen ia %50-a ere talde ho-
netan aurkitzen dira. 191 hotel/pentsio dira era honetakoak eta gela guztien %45
inguru eskaintzen dute.

Cluster 2

3, 4 eta batik bat 5 izarreko hotelek garrantzia berezia dute talde honetan.
Estratoeri dagokionez, Gipuzkoa kostaldeko ostatuen %45-a baino gehiago hemen
aurkitzen dira eta ikus daitekeenez, barrualdetik kanpo daude gehientsuenak. 130
ostatuk osatzen dute multzo hau eta gelen %35 inguru eskaintzen dute.

Cluster 3

1, 2 eta 5 izarreko hotelak dira portzentajean gehien agertzen direnak talde
honetan. Ostatu hauek, prezioaren eboluzioan gorabehera gutxi jasaten dituzte,
hau da, urtaroak ez du garrantzia handiegirik eskainitako prezioetan. Hala ere,
oro har prezioak aldatzen dituzte egunen arabera, batzuen kasuan astean zehar eta
beste batzuen kasuan egun berezietan (jai-egunak, ospakizun bereziak...). Estratoei
dagokionez, Arabak (Errioxa Arabarra kanpoan utziz) eta Bizkaia barrualdeak batik
bat horrelako hotel/pentsioak eskaintzen dituzte.
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Irudia 8.10: Prezio normalizatuekin lortutako clustering-a. Lerro jarraituak cluster-eko
medoideak dira eta lerro ez-jarraituak medoidearen tendentzia.

Irudia 8.11: Cluster 1-eko ostatuen sailkapena kategoria eta estratoka.

8.4 Clustering aldakortasunarekin

Egin den azken clustering mota aldakortasunean oinarrituta dago (volatility), pre-
zioek egun batetik bestera dituzten aldaketak neurtzeko asmoarekin. Taldekatze
honen helburu nagusia, epe motzean prezioa asko, gutxi edo ezer ere ez aldatzen du-
ten hotel/pentsioen sailkapen bat egitea da. Horretarako, ekonomian erabiltzen den
neurri baten oinarritu da azterketa: Close-to-Close Volatility edo Close/Close
Volatility [1].

Neurri horren ideia nagusia, ondoz ondoko egunen arteko diferentzia aztertzea
da logaritmoaren bidez, ondoren balio horien desbiderapen estandarra kalkulatzeko.
Adibide bezala, demagun hurrengo prezio bektore bat dugula:

90, 90, 90, 90, 100, 105, 80, 90, 90, 90, 90, 100, 105, 80

Hasteko, balio horiei logaritmoa aplikatzen zaie (modu honetan, 80e -ko ostatu
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Irudia 8.12: Cluster 2-ko ostatuen sailkapena kategoria eta estratoka.

Irudia 8.13: Cluster 3-ko ostatuen sailkapena kategoria eta estratoka.

bat eta 200e -ko beste bat eskala berdintsuagotan mugitzen dira):

4.5, 4.5, 4.5, 4.5, 4.605, 4.654, 4.382, 4.5, 4.5, 4.5, 4.5, 4.605, 4.654, 4.382

ondoren, ondoz ondoko diferentzia kalkulatzen da (kontutan hartu bektorearen lu-
zera txikituko dela unitate batean):

0, 0, 0, 0.105, 0.049,−0.272, 0.118, 0, 0, 0, 0.105, 0.049,−0.272

eta azkenik, desbiderapen estandarra kalkulatzen da.
Lan honetarako, ideia berdina hartu da, baina amaieran, desbiderapen estanda-

rra kalkulatu beharrean balio absolutuen media kalkulatu da eta arrazoia hurrengoa
da: sinpleagoa delako eta gure analisirako nahikoa delako. Beraz, azkenean gure
analisirako erabili dugun aldakortasunaren balioa era honetan kalkulatu dugu:

mean(abs(diff(log(x)))



8.4. CLUSTERING ALDAKORTASUNAREKIN 71

non x prezio bektore bat izango den. Behin ostatu bakoitzari prozesu hori aplika-
tutakoan, balioak marraztu dira begi bistaz zerbait ikusten zen edo ez aztertzeko.
Hala ere, Irudia 8.14-ko boxplot-a ikusiz ezin da ondorio nabaririk atera clustering-
erako, ondorioz kuantilen bitartez eraiki dira taldeak. Probatu diren talde kopuruak
3, 4 eta 5 izan dira, amaieran 4rekin geratzeko (kuartilak).

Irudia 8.14: Hotel/pentsioei close-to-close algoritmoa aplikatzerakoan lortutako balioen
boxplot-a.

Kasu honetan, eraiki den moduagatik ez da medoiderik behar cluster bakoitzeko,
baina aurreko grafikoen estilo berdina mantentzeko asmoarekin, talde bakoitzetik os-
tatu bat aukeratu da taldearen ordezkari bezala (aukera desberdinak probatu dira
eta bisualki egokiak direnak hartu). Emaitzak Irudia 8.15-n ikus daitezke (aldakor-
tasun txikienetik handienera ordenatuta daude).

Irudia 8.15: Aldakortasunaren araberako clustering-a. Cluster-ak aldakortasun txikienetik
handienera ordenaturik daude.

Orain, besteetan bezala 3 talde aztertuko dira detaile gehiagorekin:
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Cluster 1

Aldakortasun gutxien dutenak aurkitzen dira hemen, hau da, prezio aldaketak
oso noizean behin egiten dituztenak edo inoiz ere ez. Irudia 8.16-n ikus daitekeen
bezala, gehienak 3 izar edo gutxiagoko hotel/pentsioak dira (izar bateko hotelen
%40-a baino gehiago talde honetan aurkitzen da) eta barrualdean kokatzen dira
batik bat. Gipuzkoa barrualdean eta Araban (Errioxa Arabarra eta Gasteiz kanpoan
utziz gero) ostatuen %75-a baino gehiagok prezioetan aldakortasun oso gutxi dutela
ikus daiteke. Bestalde, gelen %15-a bakarrik eskaintzen dute talde honetan, ostatu
txikiak direnaren seinale.

Irudia 8.16: Cluster 1-eko ostatuen sailkapena kategoria eta estratoka.

Cluster 3

3. talde honetan, barrualdeko hotel/pentsio oso gutxi daude, Bilbon eta Errioxa
Arabarrean asko pilatzen direlarik, %40-a baino gehiago (Irudia 8.17-n ikus daiteke).
Bestalde, oro har kategoria altuko hotelak dira, 3, 4 eta 5 izarrekoak, Bilboko 5
izarreko hotel denak adibidez talde honetan aurkitzen dira. Ostatu hauek, prezioan
aldakortasun dezente izaten dituzte, baina ez dira gehien aldatzen dituztenak.

Cluster 4

Aldakortasun handiena dutenak dira eta Irudia 8.18 ikusten baldin bada, argi
geratzen da gehienak pentsioak direla eta Donostian kokatzen direla (%60-a baino
gehiago). Bestalde, gelen %16-a bakarrik eskaintzen dute, beraz ostatu txikiak dira
oro har.
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Irudia 8.17: Cluster 3-ko ostatuen sailkapena kategoria eta estratoka.

Irudia 8.18: Cluster 4-ko ostatuen sailkapena kategoria eta estratoka.
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