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1. Fundamental Concepts

This short monograph is about the use of models in survey sampling. In this context we need to first
introduce some basic ideas that are fundamental to sampling. To start, we note that it is meaningless
to talk about a sample without referring to the population from which it was taken.

The target population of a survey is the population at which the survey is aimed, i.e. the population
of interest. In contrast, the actual population from which the survey sample is drawn is called the
survey population.

The coverage of the survey population is the degree to which target and survey population overlap.
Here we assume there is no difference between target and survey population, i.e. we have complete
coverage.

1.1 Sample Frames and Auxiliary Information

A standard method of sampling is to select the sample from a list (or lists) that enumerate the units
making up the survey population. This is usually referred to as the (sampling) frame for the survey.
The information on the frame is crucial for sample design, e.g. stratified sampling requires the
frame to contain enough identifying information about each population unit for its stratum
membership to be determined. This information is typically referred to as auxiliary information. For
economic populations, the frame may also contain values for each unit in the population that
characterise its level of economic activity. These so-called measures of size are another example of
auxiliary information.

1.2 Non-Informative Sampling

A sampling method is said to be non-informative for a variable Y if the distribution of the sampled
values of Y and the distribution of the non-sampled values of this variable are the same. Non-
informative sampling methods are extremely important since a non-informative sampling method
allows inference about the non-sampled units in a population on the basis of sample information.

Typically the distributions of interest in survey inference are conditioned on the variables on the
frame. Consequently any sampling method whose outcome is determined entirely by the data on the
frame is non-informative for inference about the parameters of distributions that condition on these
frame values.

1.3 Probability Sampling

A probability sampling method is one that uses a randomisation device to decide which units on the
frame are in sample. This means that it is not possible to specify in advance precisely which units
on the frame make up the sample under this type of sampling. We note that randomised samples are
free of the (often hidden) biases that can occur with sampling methods that are not probability-
based. Furthermore, randomised samples are non-informative provided inclusion probabilities are
determined entirely by frame data.
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1.4 Basic Assumptions

Drawing together the ideas set out above, we shall make the following basic assumptions in the
subsequent development

(1) A perfect sample frame exists. That is, we have access to a frame that lists every unit in the
population once and only once, and there is a known number N of such units.

(2) A non-informative sampling method used to draw the sample from the frame.

Typically (2) is ensured by use of some form of probability sampling, where every unit on the
frame has a non-zero probability of selection into the sample. We again note that such a sampling
method allows sample data to be used to estimate parameters of the distribution of non-sample data.
This is extremely important for the model-based prediction approach developed below.

1.5 Population Variables

A basic aim of a sample survey is to allow inference about one or more characteristics of the
population. Typically these are defined by the values of one or more population variables.

A population variable is a quantity that is defined for every unit in the population, and is observable
when that unit is included in sample. In practice, surveys are concerned with many population
variables. However, most of the theory for sample surveys is developed for a small number of
variables, typically one or two. These variables will be referred to as study or Y-variables in what
follows. In addition, we note another class of variables, defined by those variables with values
recorded on the sample frame.  These frame variables are known for every unit in the population.
We refer to them as auxiliary or X-variables in what follows.

Example

The quarterly survey of capital expenditure (CAPEX) is a business survey carried out by the U.K.
Office for National Statistics (ONS) that has several study (Y) variables. These include collected
variables like acquisitions and disposals as well as derived variables like net capital expenditure,
defined as the difference between acquisitions and disposals. The frame for CAPEX is the ONS
Inter-Departmental Business Register (IDBR). This contains auxiliary variables corresponding to
the industry classification (Standard Industry Classification) of a business, the number of employees
of the business and its total turnover in the preceding year.

1.6 Finite Population Parameters

The population characteristic(s) that are the focus of a sample survey are sometimes referred to as
its target(s) of inference. These are typically well-defined function(s) of the population values of the
Y-variables of interest. We refer to such quantities as finite population parameter(s) or census
parameters. Some common examples (all defined with respect to population values of the Y-
variables of interest) are their totals or averages, the ratios of these averages, their variances, their
medians and more generally the quantiles of their finite population distributions.
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1.7 Sample Statistics

Once a sample has been selected, and values of Y-variables obtained from this sample, we are in a
position to calculate the values of various quantities based on these data. These are typically
referred to as sample statistics. Sample survey theory is concerned with the behaviour of two types
of such sample statistics:

(i) Statistics that estimate the census parameters of interest;

(ii) Statistics that measure the quality of these estimates.

1.8 Sample Error and Sample Error Distribution

The sample error of a survey estimate is the difference between the value of this estimate and the
unknown value of the census parameter it estimates. A high quality survey estimator will have a
small sample error. But, since the actual value of the census parameter being estimated is unknown,
the sample error of its estimator is also unknown.

If we can specify a distribution for the sample error, then we can measure the quality of the survey
estimate in terms of the characteristics of this distribution. Thus, we define the bias of an estimator
as the central location of its sample error distribution, as defined by its mean or expectation.
Similarly, we define the variance of an estimator as the spread of this distribution around this mean.
The mean squared error (MSE) of an estimator is then its variance plus the square of its bias.
Consequently a high quality survey estimator will have a sample error distribution that has bias
close to or equal to zero and a low variance, i.e. a small mean squared error.

1.9 Which Distribution? The Repeated Sampling Distribution

The repeated sampling distribution of the sample error is the distribution of all possible values that
this sample error can take under repetition of the sampling method. This corresponds to repeating
the sampling process, selecting sample after sample from the population, calculating the value of
the estimate for each sample, generating a (potentially) different sample error each time and hence a
distribution for these errors.

We note that the repeated sampling distribution treats the population values as fixed. Consequently,
the variability underlying this distribution arises from the different samples selected under the
sample selection method. This means that sample selection methods that are not probability based
are not suited to evaluation under this distribution.

1.10 Another Distribution: The Concept of a Population Model

A population of Y-values can be thought of as the outcome of many chance occurrences that can be
characterised in terms of a statistical model. This model describes the range of possible Y-values
that can occur and imposes a probability measure on the chance of occurrence of any particular
range of values. Such models are usually based on past exposure to data from other populations
very much like the one of interest as well as subject matter knowledge about how the population
values ought to be distributed.
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Statistical models for populations are often referred to as superpopulation models. Such models
therefore constitute a statistical “description” of the distribution of the population Y-values, in the
sense that the N population values are assumed to be realisations of N random variables whose joint
distribution is described by the model. Since the sample statistics and the census parameters they
estimate are all functions of these random variables, it is clear that the assumption of a
superpopulation distribution immediately induces a distribution for a sample error.

Such a superpopulation model will typically depend on unknown parameters.

1.11 The Repeated Sampling Distribution vs. the Superpopulation Distribution

The superpopulation distribution for a sample error is not the same as the repeated sampling
distribution of this error. The only source of variability for the repeated sampling distribution is the
sample selection method, which in turn is characterised by the distribution of the values of the
sample inclusion variables. It also treats the population Y-values as fixed.
In contrast, the underlying variability for the superpopulation distribution arises because of the
distribution of values of population variables. This variability has nothing to do with the sampling
process. Here values of sample inclusion variables as treated as fixed and variability arises because
of the variability of population Y-values.

Note that implicit in the use of the superpopulation distribution as the source of variability for the
sample error is the assumption that the sampling method is non-informative - i.e. superpopulation
distribution of population variables in population and sample is the same.

In what follows we focus on the use of the superpopulation distribution for inference about census
parameters. In doing so, we will typically use a subscript of ξ to denote moments with respect to
this superpopulation distribution.

1.12 How to specify the superpopulation distribution?

Consider the following four plots that show the relationship between the values of four Y-variables
(Receipts, Costs, Profit and Harvest) and an X-variable (Area for growing sugarcane) measured in a
survey of sugarcane farms in Australia in the mid 1980s (n = 338). These show a strong linear
relationship. The least squares fit to each plot is also shown, with the coefficients (and associated t-
statistics) of this fit set out in the table below.

RECEIPTS COSTS PROFIT HARVEST
Intercept 3439.82 142.65 3297.17 281.99
t ratio 1.13 0.07 1.27 2.45
AREA 1535.73 1005.34 530.40 62.85
t ratio 35.33 35.17 14.29 38.26
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Note how in each case the regression line goes “essentially” through the origin, and the variability
about this line tends to increase the further one moves away from the origin. This pattern of
behaviour is very common for economic variables. In this case there can be no sugar related
economic activity if no sugar is grown and the returns and costs associated with this activity vary on
a per unit basis as the amount of effort, i.e. area, increases. All four plots are consistent with the
widely used population model underpinning the application of the method of ratio estimation in
business surveys. This is
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For data collected at household level in social surveys the linearity assumption often remains valid,
but there is typically no reason why the regression should go through the origin or why variability
should increase with increasing X. In this case a model appropriate for standard regression
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Both the ratio and regression models are special cases of a general regression model for data
collected at PSU level (hence the assumption of uncorrelated errors) given by
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where µ(x) and σ(x)  are specified functions of x whose values depend on ω, an unknown (typically
vector valued) parameter.

It is highly unlikely that any particular survey population will be adequately modelled via the same
relationship between Y and X holding everywhere. In this case it is usual to split the target
population into strata and apply a stratified sample design. The simplest model for this type of
population is where population units are mutually uncorrelated, with means and variances of the
population Y-variables the same for all units within a stratum, but different across strata. This is a
special case of the general PSU level model above, and we refer to it as the Homogeneous Strata
Model in what follows. It is widely used (typically implicitly) in surveys. Here X is a stratum
indicator, with strata indexed by h = 1, 2, .., H, and for a population unit i in stratum h: µ(xi;ω) = µh

and σ(xi;ω) = σh. Note this model does not assume any relationship between the stratum means and
variances.

Regression models are often combined with stratum effects. To illustrate, we return to the sugarcane
farm data and note that these farms actually drawn from four separate regions. In the four plots
below the region specific regression lines are displayed, showing clear regional differences in slope.
Furthermore, as the values in the accompanying table demonstrate, it is only in one region and for
one variable that the intercept coefficients associated with these lines are significantly different
from zero. A better model for this population is therefore one where a different version of the ratio
model defined earlier held in each region. We call this a Stratified Ratio Model.
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RECEIPTS REGION=1 REGION=2 REGION=3 REGION=4
Intercept -13.49 10065.20 820.42 2928.41
t ratio -0.00 1.01 0.19 0.63
AREA 1319.66 2061.99 1635.00 1627.43
t ratio 21.67 12.87 31.30 18.88

COSTS REGION=1 REGION=2 REGION=3 REGION=4
Intercept -4629.67 -2770.53 -4709.07 1266.65
t ratio -1.51 -0.41 -1.22 0.39
AREA 1078.56 1379.30 961.43 987.74
t ratio 24.94 12.58 21.02 16.20

PROFIT REGION=1 REGION=2 REGION=3 REGION=4
Intercept 4616.18 12835.73 5529.49 1661.75
t ratio 1.28 2.15 1.21 0.46
AREA 241.105 682.68 673.57 639.69
t ratio 4.73 7.08 12.44 9.51

HARVEST REGION=1 REGION=2 REGION=3 REGION=4
Intercept 136.43 242.99 -72.33 233.24
t ratio 0.72 0.67 -0.42 1.12
AREA 60.06 85.60 63.83 68.05
t ratio 22.38 14.71 31.04 17.67

Generally we can therefore think of defining a stratified linear regression model for a population.
Here the auxiliary information corresponding to X contains a mix of stratum identifiers and size
variables, so we have a multivariate auxiliary variable X and a mean function µ(xi;ω) = ′ x iβ .
Furthermore, we can allow heteroskedasticity (i.e. varying variability) in this model to be defined in
terms of a single auxiliary variable Z. This can be one of the auxiliary size variables in X or some
positive valued function of the components of this vector (e.g. a power transformation). In any case
we then have σ(xi;ω) = σzi.

So far we have developed models for populations where the PSU is also the unit of interest. This is
usually not the case in social surveys. In the populations underpinning these surveys it is often the
case that the explanatory power of available X-variables is weak and the assumption of lack of
correlation between different population units is inappropriate.
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For example, many “human” populations are intrinsically hierarchical, with individuals grouped
together into small non-overlapping clusters (e.g. households). These clusters are often more or less
similar in size, and essentially similar in terms of the range of Y-values they contain. This is usually
manifested by individuals from the same cluster being more alike than individuals from different
clusters.

This type of situation can be modelled by an unobservable “cluster effect” variable γ: In particular
we assume that the value of Y for unit j in cluster i satisfies yij = µ + γi + εij. Where γi and εij are
independent random variables with zero means and variances σ2(γ) and σ2(ε) respectively. It is easy

to see that this model induces a within cluster correlation (ρ) for Y, given by ρ =
σ 2(γ)

σ 2(γ) + σ 2(ε)
.

Example: 1993 Survey of Psychiatric Morbidity (UK Office for National Statistics, n = 9608)

This was a social survey with PSU defined as postal sector (200 in sample). This therefore defines a
cluster. There were two further levels of selection - SSU was defined as address (postal delivery
point), and FSU was defined as a randomly selected individual living at the selected address with
age in the range 16-64.

Key variables measure in the survey were morbidity score, defined as a score on a clinical interview
schedule (revised) with values between 0 and 57, job, defined as working status [0-1] for a slected
individual, live alone, defined as an indicator of lifestyle [0-1] for individual, owner/occupier,
defined as an indicator of tenure [0-1] for the dwelling and one adult hh, which was an indicator of
type [0-1] for household. The table below shows the estimated values of the variance parameters in
the cluster model defined above when this model was fitted to the survey data. It is clear that there
are quite significant clustering effects in this population.

Variable ˆ σ 2(γ) ˆ σ 2(ε) ˆ ρ 
morbidity score 1.639604 50.85795 0.0312
job 0.008944 0.214525 0.0400
live alone 0.004477 0.137527 0.0315
owner/occupier 0.021737 0.189864 0.1027
one adult hh 0.005715 0.200353 0.0277
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2. The Model-Based Approach

In this chapter we develop the essentials of the model-based approach to sample survey design and
estimation. For a comprehensive description of this approach, see Valliant, Dorfman and Royall
(2000). In order to do so we focus on estimation of the census parameter ty  corresponding to the
population total of a Y-variable. We denote the estimator of this total by ˆ t y . Under the model-based
approach, the properties of this estimator are determined by the distribution of its sample error
under the assumed model for the population. See Brewer (1963) and Royall (1970). Consequently,
we focus on the superpopulation distribution of ˆ t y − ty . Note that this distribution conditions on the
actual outcome(s) of the sampling process as well as on the values of auxiliary variable(s). Unless
otherwise indicated we assume we have access to the population values of an auxiliary variable X
that (usually) is related to Y. As always, we assume uninformative sampling, so the superpopulation
conditional distribution of Y given X for the sampled units is the same as the corresponding
superpopulation distribution of the non-sampled units.

The first step in developing the model-based approach to estimate ty  is to realise that this is really a
prediction problem. We can always write ty = yis∑ + yir∑ = tsy + try , where s denotes the n
sampled population units and r denotes the remaining N-n non-sampled population units. Here the
sample total tsy is known, so the problem is simply one of predicting the value of the random
variable try defined by the sum of the Y-values of the non-sampled population units.

2.1 Bias and Variance under the Model-Based Approach

The model-based statistical properties of ˆ t y  as an estimator of ty  are defined by the distribution of
the sample error ˆ t y − ty  under the assumed superpopulation model. Thus, the prediction bias of ˆ t y  is
the mean of this distribution, Eξ( ˆ t y − ty ), while the prediction variance of ˆ t y  is its variance,
Varξ( ˆ t y − ty ). The prediction mean squared error of ˆ t y  is then Eξ( ˆ t y − ty )2 = Varξ( ˆ t y − ty ) +
(Eξ( ˆ t y − ty ))2. Note that both ty and ˆ t y  are random variables here!

The estimator ˆ t y  is then model unbiased under ξ (ξ-unbiased) if its prediction bias Eξ( ˆ t y − ty ) is
zero, in which case its prediction mean squared error is just its prediction variance, Varξ( ˆ t y − ty ).

Our aim is to identify the “best” estimator for ty under assumed superpopulation model ξ. In order
to do so we use the well known result that the minimum mean squared error predictor of a random
variable U given the value of another random variable V is E(U|V).  Consequently the minimum
mean squared error predictor (MMSEP) of ty is given by
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where the final equality assumes the mutual independence of different population units. Clearly the
conditional expectation in this result will depend on parameters of the assumed superpopulation
model ξ, so the corresponding empirical version of this predictor is obtained by replacing these
unknown parameters by “efficient” sample-based estimators.
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2.2 The Homogeneous Population Model (H)

This model represents the basic “building block” for more complex models that can be used to
represent real world variability. It is defined by

Eξ(yi) = µ
Varξ(yi) = σ2

Covξ(yi, yj) = ρσ2.

Linear estimates are widely used in survey sampling. These are estimators that can be expressed as
linear combinations of the sample Y-values. Consequently we now develop the “best” linear
estimator of ty under H. This is the so-called BLUP (Best Linear Unbiased Predictor) of this
quantity. Since our estimator is linear it can be expressed as ˆ t y = wiyis∑ , where the wi are weights
that have to be determined. From the decomposition

ˆ t y = wiyis∑ = yis∑ + (wi −1)yis∑ = tsy + uiyis∑

we see that the sample error can therefore be expressed

ˆ t y − ty = uiyis∑ − yir∑ = ˆ t ry − try .

To start, we require unbiasedness. This implies

Eξ (ˆ t y − ty ) = µ uis∑ − (N − n)( )= 0 ⇒ uis∑ = (N − n).

Next, we seek to minimise the prediction variance

Varξ (ˆ t y − ty ) = Varξ (ˆ t ry ) − 2Covξ (ˆ t ry, try ) + Varξ (try )

where

Varξ (ˆ t ry ) = σ 2 ui
2

s∑ + ρ uiu jj≠ i∈s∑i∈s∑[ ]
Varξ (try ) = (N − n)σ 2 1+ ρ(N − n −1)( )

Covξ (ˆ t ry ,try ) = ρσ 2 uis∑ 1
r∑( )= ρσ 2(N − n)2 .

Optimal values of ui (and hence wi) are then obtained by minimising Varξ (ˆ t ry ) above subject to the
preceding unbiasedness constraint. In order to do so, we form the Lagrangian:

  
L = ui

2

s∑ + ρ uiu jj≠ i∈s∑i∈s∑ − 2λ uis∑ − (N − n)( ).
Differentiating L with respect to ui and equating to zero we obtain
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ui = λ − ρ u jj≠ i∈s∑ = λ − ρ (N − n) − ui( )⇒ ui =
λ − ρ(N − n)

1− ρ
.

Substituting the unbiasedness constraint above then leads to λ =
N − n

n
1+ (n −1)ρ( ) which implies

ui = (N - n)/n and hence wi = N/n. That is, the optimal predictor of ty under H is the well-known
Expansion Estimator ˆ t Hy = Ny s.

In order to develop variance estimates and confidence intervals for this situation, we note that the
prediction variance of ˆ t Hy = Ny s under H is given by

Varξ (ˆ t Hy − ty ) =
N 2

n
1−

n
N

 
 
 

 
 
 σ 2(1− ρ) .

Furthermore, a model-unbiased estimator of this variance under H is then

ˆ V ξ (ˆ t Hy ) =
N 2

n
1−

n
N

 
 
 

 
 
 

1
n −1

(yi − y s)
2

s∑ .

Proof of these results is left as an exercise. Application of standard central limit theory to this
situation then leads to

(ˆ t Hy−t y) / ˆ V ξ (ˆ t Hy−t y)  ~ N(0, 1)

for large values of n. Consequently, an approximate 100(1−α)% confidence interval for ty is
ˆ t Hy ± zα

ˆ V ξ (ˆ t Hy − ty ) , where zα is the (1−α/2)-quantile of an N(0,1) distribution.

2.3 Stratified Homogeneous Population Model (S)

The simple homogeneous population model discussed in the previous section is unlikely to reflect
the variability seen in real survey populations. Consequently we now extend it to allow for strata
with distinct means and variances. Note, however, that we also assume that distinct population units
are uncorrelated. For population unit i in stratum h this model is defined by

Eξ(yi) = µh

Varξ(yi) =σ h
2

Covξ(yi, yj) = 0   for all i ≠ j.

Clearly the assumption of zero correlation between different elements of the population may not
hold if the strata are very small. Consequently this model is appropriate provided the stratum
population sizes are reasonably large.

2.3.1 Optimal Estimation Under S

We develop a BLUP for this case. In order to do so we observe that each stratum constitutes a
special case of the model H, and so the sample mean of Y within each of the strata is the BLUP of
the corresponding stratum mean. This immediately leads to the fact that the BLUP of the overall
population total ty is the Stratified Expansion Estimator
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ˆ t Sy = Nh y shh∑ = ˆ t Hhyh∑ .

In order to compute the prediction variance of this BLUP, and hence develop an estimator for it, we
observe that since distinct population units are mutually uncorrelated the prediction variance of
stratified estimator ˆ t Sy  is the sum of the individual prediction variances of the stratum specific
expansion estimators ˆ t Hhy ,

Varξ (ˆ t Sy − ty ) = Varξ (ˆ t Hhy − thy )
h∑ = (Nh

2 /nh )(1− nh /Nh )σ h
2

h∑ .

Consequently an unbiased estimator of this prediction variance is the sum of unbiased stratum level
prediction variance estimators, given by

ˆ V ξ (ˆ t Sy − ty ) = ˆ V ξ (ˆ t Hhy − thy )
h∑ = (Nh

2 /nh )(1− nh /Nh )sh
2

h∑ .

Provided strata sample sizes are large enough, the Central Limit Theorem then applies within each
stratum, and we can write:

(ˆ t Sy − ty ) / ˆ V ξ (ˆ t Sy − ty )  ~ N(0,1).

Confidence intervals for ty follow directly.

2.3.2 Sample Design Under S

A basic assumption of S is that every stratum is sampled. Consequently the most important sample
design consideration under S is how to allocate a sample of size n to the strata. One obvious
approach is to allocate in proportion to the stratum population sizes. This is usually referred to as
Proportional Allocation and is defined by fh = nh/n = Fh = Nh/N, where fh is the sample fraction in
stratum h, and Fh is the population fraction in stratum h.

Proportional allocation is typically inefficient. A more efficient approach is to choose the allocation
that minimises the prediction variance of stratified expansion estimator subject to an overall sample
size of n, i.e. nhh∑ = n . Now

Varξ (ˆ t Sy − ty ) = Nh
2σ h

2 /nhh∑ − Nhσ h
2

h∑

so minimising this prediction variance is equivalent to choosing nh in order to minimise the first
summation on the right hand side above. It can be shown (proof is left as an exercise) that this
optimal allocation satisfies nh ∝ Nhσh. It is often referred to as Neyman Allocation, after Neyman
(1934).

In many cases the strata are defined in terms of the values of an auxiliary variable, e.g. a size
variable X. In these situations the question of how to set stratum boundaries arises, given H strata
need to be defined. For H strata we require H-1 stratum boundaries: x1 < x2 < ... < xH-1.

One approach to this problem was suggested by Dalenius and Hodges (1959). This involves
partitioning the population into H strata based on the X-values by partitioning the cumulative finite
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population distribution of the xi  into H equal size segments. The approach assumes Neyman
allocation and many “narrow” strata, allowing an assumption of a uniform distribution for Y within
strata.

As an alternative to this approach, we now develop a model-based optimal stratification method that
can be useful in very long-tailed populations, as encountered in business surveys, for example.
These populations are intrinsically positive and skewed to the right, with “local” variability tending
to increase the further out into the tail of the distribution one goes. A model for this behaviour is

σ h
2 = σ 2x h

2γ ⇒ ln(σ h ) = ln(σ) + γ ln(x h )

where σ is an unknown scale coefficient and γ is an unknown positive constant. There is
considerable empirical evidence that for "long-tailed" economic populations γ typically lies
somewhere near 1. Consequently, because our population has a long tail we decide to fix γ = 1. To
justify this decision, consider the following plots, based on data extracted from the UK Monthly
Wages and Salaries Survey. For the 35 industry strata used in the design of this survey, the plots
show the relationship between the logarithms of the standard deviations of two important survey
variables (left = wages, right = employment) and the logarithm of the average value of the size
measure (register employment) used in the survey. The slopes of the least squares lines fitted to
these plots (also shown) are 1.0065 (wages) and 1.0517 (employment). This provides some
evidence that γ = 1 for these variables and this population.
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The preceding plots are not broken down by size. Consequently in the plots below we take two of
the industry strata and further break them down by size and type of business (public vs. private),
showing the same relationships at industry by size and type stratum level. There are now two lines
in each plot, corresponding to the different industry strata. The slope coefficients in this case vary
from 0.9464 to 1.2323. This remains consistent with a γ = 1 assumption in the variance model
above.



24

ln
(S

td
D

ev
(y

))

9

10

11

12

13

14

15

3 4 5 6 7 8 9
ln(Mean(emp))

ln
(S

td
D

ev
(x

))

2

4

6

8

10

3 4 5 6 7 8 9
ln(Mean(emp))

If we set γ = 1 in the variance model, and use Neyman allocation then nh ∝ Nhσh ∝ thx ⇒ nh = nthx/tx
and so

Varξ (ˆ t Sy − ty ) = σ 2tx
2 /n .

This expression does not depend on the method used to stratify the population. Consequently any
method of stratification leads to the same prediction variance for ˆ t Sy in this case.

However, equal allocation (nh = n/H) is an alternative and often more convenient allocation
procedure and we now investigate how to form efficient strata for this situation. To start, we note
that under γ = 1 the leading term of the prediction variance of the stratified expansion estimator is

σ 2 Nh
2 /nh x h

2

h∑ = σ 2 thx
2 /nhh∑

where thx is the total of the X-values in stratum h. Under equal allocation this leading term reduces
to

(σ 2H /n) thx
2

h∑ .

This expression is minimised by choosing the strata so that the thx are equal. That is, thx = H−1tx. We
refer to this method as Equal stratification. Given this method of stratification and equal allocation
we see that

Varξ (ˆ t Sy − ty ) = σ 2tx
2 /n

which is exactly the same as the variance under optimal allocation. That is, there is no efficiency
loss from equal allocation – provided we form our strata optimally.

Finally, we consider choice of the number of strata (H). Although this is often not decided on the
basis of statistical considerations, when stratifying on the basis of a size variable we usually have
the option of choosing between a minimum of 2 strata and a maximum of [n/k] strata, where k
denotes a minimum acceptable stratum sample size, and [.] denotes integer part.

Cochran (1977, pp 132-134) recommends that the number of strata be kept to around 6 or 7. We can
evaluate this recommendation using a model-based analysis. We again assume the variance model
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σ h
2 = σ 2x h

2γ

and equal allocation. The leading term of the prediction variance of the stratified expansion
estimator is then (Fh = Nh/N)

(σ 2 /n)tx
2γ N 2−2γ

Fh
2−2γ

h
∑

H 2γ −1

 

 
 
 

 

 
 
 = (σ 2 /n)tx

2γ N 2−2γ D(H) .

Note that when γ = 1/2 and γ = 1, D(H) = 1, and the prediction variance does not depend on H. When
1/2 < γ < 1, D(H) varies little with H. We illustrate below for γ = 3/4.

H (Fh)         D(H)

2 {.75 .25} .9659
3 {.60 .25 .15} .9595
4 {.50 .25 .15 .10} .9553
5 {.45 .25 .15 .10 .05} .9382
6 {.35 .30 .20 .10 .03 .02} .9052
7 {.30 .25 .20 .15 .07 .02 .01} .9027
8 {.28 .24 .18 .14 .08 .05 .02 .01} .9070
9 {.25 .20 .18 .15 .11 .05 .03 .02 .01} .9096

Clearly there is nothing to be gained by going beyond Cochran’s recommended limited of 6-7 size
strata.

2.4 Populations with Linear Regression Structure

As noted earlier, many business survey populations can be modelled by the Simple Ratio
Population Model (R). This is defined by:
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It is straightforward to see that the minimum mean squared error predictor (MMSEP) of ty under
this model is

.* ∑+=
r isyy xtt β

It is well known that the BLUE (Best Linear Unbiased Estimator) for β in the model R is

bR =
yis

∑
xis∑

.

“Plugging” this estimator back into the MMSEP above leads to the Ratio Estimator of ty
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It can be shown that this estimator is the BLUP for ty under R. Its use is typically confined to
situations where

• the model R itself is plausible - i.e. there is a strong correlation between Y and X and the
size variable X is strictly positive;

• values of X are measured on the sample;
• the population total of X is known.

In effect, the “ratio” model R is a crude but convenient way of describing what tends to be observed
in data collected in many business surveys.
Turning now to the Simple Linear Population Model (L), which is useful for describing many social
populations, and is defined by

Eξ (yi | xi) = α + βxi

Varξ (yi | xi) = σ 2

Covξ (yi,y j | xi,x j ) = 0 for all i ≠  j

we see that the MMSEP under L is

.)()data sample|( ∑∑ ++=
r is iy xytE βαξ

Substituting the optimal (BLU) estimators for α and β under L (the Ordinary Least Squares
estimators of these parameters) leads to the Regression Estimator

ˆ t Ly = yis∑ + (aL + bL xi)r∑ = (aL + bL xi)U∑ = N y s + bL (x − x s)[ ]

where

aL = y s − bL x s

bL =
(yi − y s)(xi − x s)s

∑
(xi − x s)

2

s∑
.

2.4.1 Optimal Sample Design Under R

Under the ratio model R the prediction variance (and hence MSEP) of the ratio estimator is just the
prediction variance of the implied predictor of the non-sample total of Y. This is
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This result is interesting since it is easy to see that it is minimised when the sample s contains those
n units in the population with largest values of X. Consequently, if we believe that R represents a
“right” model for our population, then use of the ratio estimator together with this “extreme”
sample represents an optimal sampling strategy for estimating ty.

2.4.2 Optimal Sample Design under L

A similar approach can be used to show (proof is left as an exercise) that the prediction variance of
the regression estimator ˆ t Ly  under the model L is

Varξ (ˆ t Ly − ty ) =
N 2

n
σ 2 1−

n
N

 
 
 

 
 
 +

(x − x s)
2

(1− n−1)sxx

 

 
 

 

 
 

where

sxx = (n −1)−1 (xi − x s)
2

s∑ .

In this case we see that this prediction variance is minimised by choosing the sample such that
x s = x . This type of sample is often said to be first-order balanced on X.

2.4.3 Combining Regression and Stratification

In practice most populations are more complex than implied by either of the simple linear models
underpinning R and L. Again, we can accommodate this complexity by stratifying the population so
that separate versions of these models hold in different strata. For example, if different versions of
R hold in the different strata, with parameters  βh and σh, then we refer to the overall model as the
Separate Ratio Population Model (RS). It is straightforward to see that the BLUP of the population
total ty under this model is the Separate Ratio Estimator

ˆ t RSy = ˆ t Rhyh∑ =
y sh

x sh

txhh∑ .

Here a subscript of h denotes a stratum h specific quantity. If the parameters βh and σh are actually
the same for the different strata, then ˆ t RSy  is an inefficient estimator compared with the standard
ratio estimator ˆ t Ry . This loss in efficiency is price we must pay for an estimator that is optimal
across a much wider, and more likely, range of models for the populations that are observed in
survey practice.

Exactly the same argument can be used to define the Separate Regression Population Model (LS),
with corresponding BLUP for ty defined by the Separate Regression Estimator
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ˆ t LSy = Nh y sh + bh (x h − x sh )[ ]
h∑ .

Optimal sample design for the separate ratio estimator follows directly using the same arguments as
those already used with the stratified expansion estimator. Thus, under the RS model

Vξ (ˆ t RSy − ty ) = σ h
2 Nh

2x h
2

nh x sh

− Nh x h
 

 
 

 

 
 

h∑ .

Optimal sample allocation to the different strata is defined by choosing the nh to minimise this
expression, subject to these values summing to the overall sample size n. However since the stratum
sample mean x sh  depends implicitly on nh, there is no general solution to this minimisation
problem. Instead we adopt a conservative approach and set x sh = x h  (i.e. we assume stratified
balanced sampling). In this case a straightforward application of the same constrained minimisation
argument that underpins Neyman allocation for the stratified expansion estimator leads an optimal
stratum allocation given by

nh = n
σ hNh x h

σ gNg x gg∑

 

 

 
 

 

 

 
 .

Furthermore, under this allocation, and still assuming stratified balanced sampling,

Varξ (ˆ t RSy − ty ) = n−1 σ hNh x hh∑[ ]2
− σ h

2Nh x hh∑ .

Turning now to sample allocation for the separate regression estimator, we observe that stratified
balanced sampling is optimal for this estimator under the model LS. With this type of sampling,

Vξ (ˆ t LSy − ty ) = (Nh
2 /nh )(1− nh /Nh )σ h

2

h∑ .

Optimal stratum sample allocation in this case is equivalent to Neyman allocation and is given by

nh = n Nhσ h

Ngσ gg∑

 

 

 
 

 

 

 
 
.

Note however that, unlike the case with the stratified expansion estimator, the σh above refers to a
residual standard deviation under the model LS. With this allocation

Vξ (ˆ t LSy − ty ) = n−1 Nhσ hh∑[ ]2
− Nhσ h

2

h∑ .

2.5 Model-based Methods for Hierarchical Populations

This population model is often used with hierarchical populations. For example, populations of
individuals are often grouped into households or families. Similarly, populations of households are



29

often grouped into villages, suburbs, towns etc. This hierarchical grouping structure tends to be
reflected by the fact that population units associated with the same group “further up” the hierarchy
tend to have values for survey variables that are more alike than those associated with population
units from different groups. This clustering effect is especially noticeable when there is little
auxiliary information available to explain why some units are more alike than others.

We consider the simplest version of this situation, a two level population, where the population
elements defining the census parameters of interest are grouped into clusters. We let g = 1, 2, ..., Q
index the clusters in the population, and i = 1, 2, ..., Mg index the elements within the gth cluster.
Beyond knowing the cluster of a population element, there is no auxiliary information, and the
simple model of a common mean and variance for the population Y-values seems appropriate. Each
cluster is taken as defining a “micro-realisation” of this population, and the association between
different elements in the same cluster is then accounted for by assuming the cluster can be modelled
via the simple homogeneous model H. This leads to the Clustered Population Model (denoted by C
in what follows):

Eξ(yig) = µ
Varξ(yig) = σ2

Covξ(yig,yjf)  = ρσ 2 if g = f
0 otherwise

 
 
 

.

Sampling methods for such a two level population typically reflect this structure by sampling
clusters first and then sampling elements within sampled clusters. This is typically referred to as
Two-Stage Sampling. In order to characterise this situation we now introduce some extra notation.
Let Q be the total number of clusters in population, with s denoting the clusters selected into the
sample. We assume there are q sampled clusters. We put Mg equal to the number of elements in
cluster g, with sg denoting the set of sampled elements in sampled cluster g. There are mg sampled
elements in sampled cluster g. The overall sample size (of elements) is then n = mgs∑ , while the

corresponding overall population size is N = MgU∑ . A special case of this situation is cluster
sampling, where mg = Mg.

2.5.1 Optimal Prediction under C and Two Stage Sampling

The BLUP of the population total ty for this situation can be derived via the usual “minimise
prediction variance subject to prediction unbiased” type of argument. We do not do this here.
Instead we motivate this predictor via a more intuitive argument. To start we note that lack of
correlation between clusters means that Eξ (y g | sample data) = Eξ (y g ) = µ  for any non-sample
cluster g. What about the means of sampled clusters? Since we know the sample values in these
clusters, we need only to specify the expected value of the non-sampled mean in such a cluster.
Clearly, the average value of the non-sampled elements in sampled cluster g will depend on the
sampled values, and hence on the average value of the sampled elements in that cluster. If the
within cluster correlation ρ is high this mean will be very close to the sample mean in the cluster.
Conversely, if ρ is close to zero then this mean will be close to the overall population mean µ. A
simple model for this dependence is

Eξ (y rg | y sg ) = (1−αg )µ + αg y sg

where y rg  is the mean of the non-sampled elements in cluster g, y sg  is the mean of the sampled
elements in cluster g and αg is a weight reflecting knowledge about y rg  given the average value y sg

of the sampled data from the cluster.
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The MMSEP for ty under C and this conditional mean model is then
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An efficient predictor of ty is obtained by substituting an efficient sample-based estimator ˆ µ  for µ in
this expression, leading to

ˆ t Cy = mg y sgs∑ + (Mg − mg ) (1−αg ) ˆ µ + αg y sg[ ]s∑ + ˆ µ N − Mgs∑( ).

How to define ˆ µ  here? And how to define the weights αg? To start, we observe that under C the
sample cluster means are uncorrelated, with Eξ( y sg ) = µ and Varξ (y sg ) = σ 2(1− ρ + ρmg ) /mg .
Consequently, the BLUE of µ based on these sample means is

ˆ µ =
mg (1− ρ + ρmg )−1 y sgs

∑
mg (1− ρ + ρmg )−1

s∑
= θg y sgs∑ .

Computation of this estimator assumes we know the intra-cluster correlation ρ. If we do, then
substituting this value above and in the value for αg derived below leads to the BLUP for ty.
However, typically we don’t know ρ. Here are some options we might consider in this case:

Option 1: Assume ρ = 0 ⇒ θg = n−1mg  ⇒ ˆ µ = mg y sgs∑ / mgs∑ = y s.

Option 2: Assume ρ = 1 ⇒ θg = q−1 ⇒ ˆ µ = q−1 y sgs∑ = y s.

Option 3: Estimate ρ directly by fitting a 2-level model to sample data.

We turn now to definition of the weights αg. In this case we assume that the sample and non-sample
means within a cluster are normally distributed (a reasonable assumption provided the sample/non-
sample sizes in the cluster are large enough to justify invocation of the Central Limit Theorem).
Then standard results for the normal distribution allow us to write

y sg

y rg

 

 
 

 

 
 ~ N µ

µ
 
 
 

 
 
 ,σ 2 mg

−1(1− ρ + ρmg ) ρ
ρ (Mg − mg )−1[1− ρ + ρ(Mg − mg )]

 

 
 

 

 
 

 
 
 

  

 
 
 

  

from which we immediately obtain

E(y rg | y sg ) = µ +
ρmg

1− ρ + ρmg

(y sg − µ)

and hence αg =
ρmg

1− ρ + ρmg

. Here again we see a dependence on ρ and so we have the following

estimation options
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Option 1: Assume ρ = 0 ⇒ αg = 0 ⇒ ˆ t Cy = Ny s
Option 2: Assume ρ = 1 ⇒ αg = 1 ⇒ ˆ t Cy = Mg y sgs∑ + y N − Mgs∑( )
Option 3: Substitute an estimate of ρ in the formula for the optimal αg (and in the formula for
the BLUE for µ derived earlier). This leads to a so-called EBLUP (Empirical Best Linear Unbiased
Predictor) for ty.

2.5.2 Optimal Sample Design Under C and Two Stage Sampling

It is intuitively obvious that any efficient linear estimator for ty under C must weight all sample
elements in the same cluster equivalently. Such an estimator can therefore be written

ˆ t Cy = wg yii∈sg
∑g ∈s∑ = mg y sgs∑ + ugmg y sgs∑

where

wg = 1 + ug
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Under cluster sampling (mg = Mg)
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The MMSEP (and BLUP) is defined by

ug = mg
−1 (Mg − mg )αg + θg N − M fs∑ + (M f − m f )(1−α f )

s∑{ }[ ]

αg =
ρmg

1− ρ + ρmg

θg =
mg (1− ρ + ρmg )−1

m f (1− ρ + ρm f )−1

s∑

so when ρ = 0 ⇒ αg = 0, θg = n−1mg ⇒ ug =
N − n

n
 and when ρ = 1 ⇒ αg = 1, θg = 1/q ⇒

ug =
1

mg

Mg − mg +
1
q

(N − M fs∑ )
 

 
 

 

 
 .

An important special case is where all clusters are the same size (Mg = M, say), with the same
sample size in each sampled cluster, i.e. mg = m. In this situation

αg =
ρm

1− ρ + ρm
 ⇒ ug = (MQ/mq) −1
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and the prediction variance of the BLUP is

[ ].)()/)()(1()ˆ( 11222 −− −+−−=− QqQMmqMQmqMQttVar yCy ρρσξ

This in minimised by choosing q as large as possible. For a fixed overall sample size n = mq this
leads to the conclusion that the optimal design (in terms of minimising the prediction variance) in
this important special case has m = 1 and q = n. The case of varying cluster sizes is more complex.

In most practical two-stage sample design situations, however, the design constraint is cost based,
depending on the number of clusters selected, the size of the selected clusters and the second stage
allocation in the selected clusters. Cochran (1977, pg 313) gives a simple cost function that
incorporates these features:

B = c1q + c2 mgs∑ + c3 Mgs∑ .

The optimal design is then obtained by choosing q, s and mg to minimise the prediction variance of
ˆ t Cy , subject to a fixed value for B above.

Again, we consider the important special case of all clusters the same size (M) with the same
sample size (m) in each sampled cluster. Here the cost model is B = q(c1 + c2m + c3M).

Substituting q = B(c1 + c2m + c3M)−1 in Varξ( ˆ t Cy  − ty) and simplifying leads to an expression that is
proportional to K1 + m−1K2 + mK3, where

K1 = N 2C−1 ρ(c1 + c3m) + (1− ρ)c2( )− N(1− ρ + ρM)
K2 = N 2C−1(1− ρ)(c1 + c3m)
K3 = N 2C−1ρc2 .

This expression is minimised by m =
K2

K3

 

 
 

 

 
 

(1− ρ)(c1 + c3M)
ρc2

 

 
 

 

 
  when ρ > 0.

2.6 Optimal Prediction Under The General Linear Model

Finally, we observe that all the models considered in this Chapter can be considered as special cases
of the General Linear Model, defined by

Y = Xβ + ε.

Here Y is the N-vector of the population Y-values, Eξ(ε) = 0 and Varξ(ε) = σ2V, X is a N × p matrix

of auxiliary variables and V = V(X) is a known positive definite matrix: V = Vss Vsr
Vrs Vrr

 
  

 
  .

We consider optimal prediction of ty via a linear combination of sample Y-values. That is, we use a
predictor of the form

ˆ t wy = ′ w y s
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where ys denotes the n sample Y-values and the weights defining the n-vector w are chosen so that
ˆ t wy  has minimum prediction variance in the class of all unbiased predictors of ty under the general
linear model above. These optimal weights were derived by Royall (1976) and are given by

wopt = 1n + ′ H opt ′ X 1N − ′ X s1n( )+ In − ′ H opt ′ X s( )Vss
−1Vsr1N−n

where In is the identity matrix of order n, 1m is a m-vector of one’s and Hopt = ′ X sVss
−1Xs( )−1

′ X sVss
−1.

With these optimal weights, the BLUP of ty is then given by

ˆ t opt ,y = ′ 1 n Ys + ′ 1 N−n Xr
ˆ β opt + VrsVss

−1(Ys − Xs
ˆ β opt )[ ]

where ˆ β opt = ′ X sVss
−1Xs( )−1

′ X sVss
−1Ys is the BLUE of the parameter β in the general linear model.
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3. Robust Model-Based Inference

The optimal results developed in the previous Chapter depended on the assumed model ξ actually
describing the population of interest. Such a model will be referred to as a “working model” below.
However, in practice, working models only approximate reality and so we need to investigate
whether our inference is sensitive to misspecification of the working model ξ. In particular, if the
inference remains valid, or approximately valid, for reasonable alternative model specifications for
the population and sample data, then we say that out inference is robust. If not, then we must be
cautious in our interpretation of the inference, since it could contain serious errors.

3.1 Misspecification of the Homogeneous Model (H)

Suppose our working model ξ is the Homogeneous Model H, but an alternative model is better for
the population values. Is the BLUP ˆ t Hy  under H (the expansion estimator) still unbiased and optimal
under this alternative model? To answer this question we need to specify the alternative model (or
models). A simple alternative to H, which we denote by η is

Eη (yi) = µ
Varη (yi) = σ i

2

Covη (yi,y j ) = ρσ iσ j , for i ≠ j.

Since the population Y-values still have a common mean under η, it is easy to see that ˆ t Hy  is
unbiased for ty under η proof is left as an exercise).

However, it is a different story as far as variance estimation is concerned, since the actual prediction
variance of ˆ t Hy  under η is then

Varη (ˆ t Hy − ty ) = (N − n)2
ρ n−1 σ is∑ − (N − n)−1 σ ir∑{ }2

+(1− ρ) n−2 σ i
2

s∑ + (N − n)−2 σ i
2

r∑{ }

 

 

 
 
 

 

 

 
 
 

while the expected value of the unbiased estimator (under the working model) of this variance is
now

Eη
ˆ V ξ (ˆ t Hy − ty )( )= (N 2 /n)(1− n /N) ρ

n −1
(σ i −σ s)

2

s∑ +
1− ρ

n
σ i

2

s∑ 
  

 
  

where σ s is the sample mean of the σi.

Suppose now that we wanted to construct a confidence interval for ty using this working model
variance estimator. To do this we need to construct the t-statistic

t = (ˆ t y − ty ) / ˆ V ξ (ˆ t y − ty ) .

The validity of the resulting confidence interval then requires that the distribution of this statistic, at
least in large samples, is N(0,1). However, Cressie (1982) points out that the variance of the
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numerator of the t-statistic should match the expected value of its squared denominator if the large
sample distribution of this statistic is to be N(0,1). When η holds this is not the case in general.
There are two basic approaches we can take in this situation. The first is to not use the unbiased
variance estimator under the working model ξ, but instead develop an alternative estimator of the
prediction variance of ˆ t Hy  that is at least approximately unbiased under both η and ξ. We shall
consider this approach in the next chapter. The second approach is to select a sample such that the
bias in ˆ V ξ (ˆ t Hy − ty )  is zero (or approximately zero) under the alternative model η and use the
standard t-statistic with this specially selected sample.

In order to do this we observe that the leading term in ˆ V ξ (ˆ t Hy − ty )  vanishes if the sample is such
that

n−1 σ is∑ = (N − n)−1 σ ir∑ .

If the sampling fraction n/N is negligible, and ρ is not too far from zero, then both Varη (ˆ t Hy − ty )

and Eη
ˆ V ξ (ˆ t Hy − ty )( ) have the same leading term, N 2(1− n /N)(1− ρ)n−2 σ i

2

s∑ . Consequently this
restriction on the sample ensures the t-statistic is “safe”.

Obviously, we cannot choose the sample to satisfy this restriction if we do not know the σi.
However, we intuitively expect that a large sample selected via simple random sampling to be just
as likely to have the right hand side in the above condition less than the left hand side as the other
way around. Consequently, provided the sample size is large, SRS represents a safe sampling
strategy for the t-statistic under the model η.

Suppose there is an auxiliary variable X with values xi ∝ σi, then an alternative approach is to order
the population elements according to these X-values and then sample by selecting every kth

population element on this ordered list, where k is the integer part of N/n. Such an ordered
systematic sample also stands a good chance of achieving the above equality.

What about the optimality of the expansion estimator ˆ t Hy under η? It is true that ˆ t Hy  is the BLUP
under the working model ξ, but it is not true that it is generally also the BLUP under η. We denote
this η-BLUP by ˆ t ηy . What is the efficiency loss from using ˆ t Hy  instead of ˆ t ηy  when η is true? In
order to answer this question we need to compare Varη (ˆ t ηy − ty ) with Varη (ˆ t Hy − ty ) .

Suppose ρ = 0. Then

ˆ t ηy = yis∑ + (N − n) yiσ i
−2

s∑( ) σ i
−2

s∑( )−1
;

Varη (ˆ t ηy − ty ) = (N − n)2 σ i
−2

s∑( )−1
+ σ i

2

r∑ ;

Varη (ˆ t Hy − ty ) = (N − n)2 /n2( ) σ i
2

s∑ + σ i
2

r∑ .

It immediately follows that the gain in precision from using the η-BLUP ˆ t ηy  instead of the ξ-BLUP
ˆ t Hy  is
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dη (ˆ t Hy, ˆ t ηy ) = (N − n)2 /n( )n−1 σ i
2

s∑ − n−1 σ i
−2

s∑( )−1 
  

 
  .

This expression is minimised when s contains those units with largest values of σi. This extreme
sample will usually be quite different from the “σ-balanced” sample defined above that guarantees
the “safeness” of the t-statistic. Consequently, using a “safe” sample and estimating ty via ˆ t Hy  does
not lead to robustness of optimality for this estimator. This is an example of the insurance
“premium” one has to typically pay for using a robust approach.

3.2 Robustness under Stratification

We next turn to the stratified version, S, of the simple homogeneous model H. What if the strata are
“wrong”? That is, the population has been incorrectly stratified. In fact, a “correct” stratification
exists, but we don’t know it.

We use h to index the “working” (i.e. incorrect) strata and g to index the unknown  "correct" strata,
with η denoting the correctly stratified model (i.e. the one indexed by g) and ξ denoting the
incorrectly stratified working model (i.e. the one indexed by h). We also assume simple random
sampling without replacement within the h-strata (i.e. stratified random sampling). The ξ-BLUP,
which we denote by ˆ t S(ξ )y  here, is then the stratified expansion estimator defined using the h-strata.

Let nhg be the stratum h sample “take” of stratum g elements. Given the stratified random sampling
assumption, it immediately follows that, under η, this quantity is distributed as hypergeometric with
parameters Nh, Nhg = total number of stratum g elements in stratum h, and nh. Hence
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An immediate consequence is that the η-bias of ˆ t S(ξ )y  is zero:

Eη (ˆ t S(ξ )y − ty ) = Eη Eη (ˆ t S(ξ )y − ty | nhg )( )
= Eη nhgNh /nh − Ngh∑( )µgg∑[ ]
= 0 .

We can also show (but the algebra gets messy) that the η-bias of the usual variance estimator for
ˆ t S(ξ )y , i.e. Eη

ˆ V ξ (ˆ t S(ξ )y ) −Varη (ˆ t S(ξ )y − ty )[ ] is also zero. We conclude that stratified random sampling
is a “safe” sampling strategy for the stratified expansion estimator.
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The preceding analysis assumes that we don’t know the correct stratification for the population, so
the unbiasedness properties are with respect to all possible values the (unknown) counts nhg can
take. However, in many cases it is possible, from analysis of the sample data, to identify these
counts (and hence the “correct” strata) after sampling. In this case it may be possible to replace
ˆ t S(ξ )y  by ˆ t S(η )y , the stratified expansion estimator based on the g-strata. This is typically referred to
as post-stratification and ˆ t S(η )y  is called the post-stratified expansion estimator. Inference then
proceeds on basis of η being correct (i.e. conditional on the realised values ng = nhgh∑ ).

There are two basic problems with this approach. The first is that we have no control over the value
of ng. In some cases this can even be zero for poststrata that are “rare”, in which case no unbiased
estimator exists under η. In any case, it is clear that ˆ t S(η )y  will then have a higher prediction
variance than would have been achieved with correct pre-stratification based on η.

The second problem is that use of ˆ t S(η )y  requires knowledge of the population counts Ng in the g-
strata. If these are unknown, we can substitute ˆ N g = (nhg /nh )Nhh∑  in ˆ t S(η )y  to get the “estimated”

η-BLUP ˜ t S(η )y = ( ˆ N g /ng ) yisg
∑g∑ . The prediction variance of this “estimated” BLUP will then be

greater than that of the actual η-BLUP (Ng known):

Varη (˜ t ηSy − ty ) = Eη Varη ˜ t ηSy − ty | ˆ N g( )[ ]+ Varη Eη
˜ t ηSy − ty | ˆ N g( )[ ].

A consistent estimator of this prediction variance is obtained by substituting unbiased estimators for
unknown values in these expressions.

Often we wish to combine pre- and post-stratification. This typically arises when the expected value
of the survey variable Y varies according to a number of factors, but we only have frame
information on a subset of these factors. In such cases pre- or "sampling" strata are defined using
the "frame" factors and post-stratification is used to account for the remaining factors.

To illustrate, suppose an individual’s Y-value varies by X1 = Region (categorical) and X2 = Age-Sex
category in the sense that Eξ(Y) = region effect + age-sex effect. The sampling frame contains
values for region (sampling strata), while data on age and sex obtained from sampled individuals.
We also know (from other sources) the total number of people in each age-sex class in the
population. This is a standard scenario for many social surveys.

Let h = 1, 2, …, H index the pre-strata (defined by X1) and let g = 1, 2, …, G indexes the post-strata
(defined by X2 ). The BLUP for ty based on the pre-strata is then defined by sample weights wi =
Nh/nh for individual i ∈ h. Unfortunately, this estimator is biased under the true two-factor model
for the population defined in the previous paragraph.

However, we can recover an unbiased linear predictor of ty under this two-factor model by
modifying the sample weights so that they sum to Nh in pre-stratum h as well as sum to Ng in post-
stratum g. This can be achieved by iterative re-scaling (raking) of the wi as follows:

1. Set wi(0) = wi and k = 0.
2. Put k = k + 1.
3. For each value of g, let Wg(k−1) = sum of the weights wi(k−1) for all sampled individuals i ∈

post-stratum g. For each such individual calculate w1i = wi(k−1) × Ng/Wg(k−1).
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4. For each value of h, let W1h denote the sum of the weights w1i for all sampled individuals i ∈
pre-stratum h. For each such individual calculate wi(k) = w1i × Nh/W1h.

5. If there is little or no difference between wi(k−1) and wi(k), then go to step 6. Otherwise
return to step 2.

6. Set the final weight wi = wi(k).

Note that these rescaled weights do not define the BLUP for ty under the two-factor model (i.e. the
one with X1 and X2 as covariates). The BLUP for this model requires use of multiple regression, and
is typically implemented via calibrated weighting. See later.

3.3 Balanced Sampling and Robust Estimation

Suppose now that we have an auxiliary variable X and the ratio model R seems appropriate for the
target population. As shown in the previous Chapter, the optimal sampling strategy for minimising
the prediction variance of the BLUP under R is one where the n population units with largest values
of X are sampled.

In practice, however, such extreme samples are hardly ever chosen. The reason is easy to find -
what if the model is wrong? As it stands, however, this is not really an adequate reason for not
adopting this optimal approach. Models are always wrong, since they only approximate reality. The
real question is how sensitive is the above optimal strategy to misspecification of the model.

Suppose the target population follows model L rather than R: We use (as usual) ξ to denote our
working model R, and we denote this alternative by η. Under η (α is the intercept coefficient):

Eη (ˆ t Ry − ty ) = α 1/ x s −1/ x r[ ].

For α > 0 this bias will be negative (and large in absolute value) when s is the “extreme” sample.
Hence adopting the optimal strategy under R leaves us extremely vulnerable to a possible large bias
if in fact the model L holds.

But, for arbitrary α, the above bias is zero when the sample s satisfies x s = x r = x . That is, the
sample is first order balanced on the auxiliary variable X. Furthermore, under balanced sampling
the ratio estimator (the ξ-BLUP) reduces to the expansion estimator and the prediction variance of
the ratio estimator under ξ is

Varξ (ˆ t Ry − ty | balance) = σ 2(N − n)(N /n)x .

In contrast, under "extreme" sampling and ξ,

Varξ (ˆ t Ry − ty | extreme) = min
s

σ 2(N − n)(N /n)x (x r / x s){ }.

The relative efficiency of using a balanced sample instead of the extreme sample when the assumed
model ξ is correct is therefore

Varξ (ˆ t Ry − ty | extreme)
Varξ (ˆ t Ry − ty | balance)

= min
s

(x r / x s) = 1−
n
N

 
 
 

 
 
 

−1 x 
max

s
(x s)

−
n

N − n
 
 
 

 
 
 .



39

This ratio can be very small, so adopting a balanced sampling strategy can lead to a large loss of
efficiency. That is, as we found out earlier in this chapter, robustness to model misspecification can
have a large “insurance premium” in terms of efficiency loss.

There are two aspects to this efficiency loss. The first is the efficiency loss relative to the optimal
sampling and estimation strategy under the working model ξ. The second is more subtle. It is the
efficiency loss due to not using the η-BLUP. Remember that we are using the ξ-BLUP which is η-
unbiased in the balanced sample but not necessarily efficient under η. Are there situations where
this second form of efficiency loss is minimised?

The answer to this is yes. To illustrate, suppose the true model for the population data is L rather
than the working model R. As noted above, under balanced sampling the ratio estimator reduces to
the simple expansion estimator. However, it is easy to see that under L the BLUP (the regression
estimator) also reduces to the expansion estimator. That is, the ratio estimator is equivalent to the
BLUP under L in a balanced sample.

Royall and Herson (1973a) prove a theorem that generalises this result to polynomial alternatives to
the simple model R. This can be stated as follows: Suppose that expectation under the “real” model
η is a polynomial of degree k in X. Also the sample is balanced up to order K (i.e.
n−1 xi

k

s∑ = (N − n)−1 xi
k

r∑ ; k = 1, .., K). If a ratio estimator is used when η is the “true” model then

ratio estimator is η-unbiased. Furthermore, if such a sample is selected, and

Varη (yi) = σ 2 ak xki0

K∑

then the η-BLUP is Ny s. Since the ratio estimator is also equal to the expansion estimator on such a
sample, it follows immediately that it must be the η-BLUP (as well as η-unbiased) on this sample.

In an effort to try to minimise efficiency loss relative to the optimal strategy under R (ratio
estimation and an extreme sample), Royall and Herson (1973b) recommend stratified rather than
simple balanced sampling. Their argument for this approach goes along the following lines:

1. When a balanced sample is selected within each stratum

Varξ (ˆ t RSy − ty ) = σ 2 (Nh
2 /nh ) 1− (nh /Nh )[ ]x shh∑ .

This is minimised subject to a sample size of n when the sample stratum allocation is
proportional to Nh x sh , in which case

Varξ (ˆ t RSy − ty | optimal allocation) = σ 2 n−1 Nh x shh∑( )2
− tx

 
  

 
  .

This is always less than or equal to the variance of the ratio estimator under simple balanced
sampling.

2. The strategy of stratified balanced sampling and the stratified ratio estimator is qualitatively
more robust than the strategy consisting of simple balanced sampling and the ordinary ratio
estimator (because the former can accommodate non-linear alternatives).
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3. The prediction variance of the stratified ratio estimator ˆ t RSy  under this stratified balance
strategy can always be made smaller by using equal allocation and equal stratification.

Finally, we set out a general theorem that allows one to identify when a linear estimator is equal to
the BLUP under the general linear model. Let W be an arbitrary (N - n) × n matrix of sample
weights. We can then always write any linear predictor as a special case of the W-weighted linear
predictor of ty defined by ˆ t y (W) = yis∑ + ′ 1 r Wy s. It is easy to see that the prediction bias of this
estimator under the general linear model y = Xβ + ε  is then ′ 1 r(WXs − Xr)β . This bias is zero if the
sample is W-balanced, i.e. ′ 1 r WXs = ′ 1 r Xr.

The general theorem (Chambers, 1982; see also Tallis, 1978; Tam, 1986) can then be stated as
follows: Provided a W-balanced sample is selected, a necessary and sufficient condition for ˆ t y (W)
to be the BLUP of ty is when the matrix Vss

1/ 2(W − VrsVss
−1 ′ ) 1r  is in the vector space spanned by the

columns of Vss
−1/ 2Xs. Here Vss, Vrr and Vrs denote the sample/non-sample components of the

variance matrix of the vector ε.

All the results on balancing developed so far can be obtained as special cases of this theorem.

3.4 Outlier Robust Estimation

So far we have focussed on robustness to model misspecification. However, in practice what we
often see are isolated data values in our sample that clearly do not follow the working model, while
the main mass of our sample data do conform to it. These outliers (or ‘wild’ data values) are a
common feature of many sample surveys, particularly those of highly skewed economic
populations. Ignoring these outlying values and calculating an estimate for ty on the basis that the
working model applies to all the sample data can lead to a completely unrealistic value for this
estimate.

3.4.1 Basic Ideas

What can we do if we observe outliers in our sample data? To discuss this further we focus on the
common situation of a weighted linear estimate ˆ t wy = wiyis∑ . Here wi is the sample weight. An
outlier may then be a value yi completely unlike any other sample Y-value. However, it can also be
a ‘non-small’ yi that is associated with a ‘large’ weight wi so the product wiyi is large.

The interplay between the sample weight and the sample value when defining an outlier leads to
two basic approaches to dealing with these cases.

1. Modify the sample weights of the outliers by reducing them relative to those of sample units
that are not outliers. However, leave their Y-values unchanged (modify weight option).

2. Modify the y-values associated with the sample outliers so as to make them more
“acceptable”, but leave their weights unchanged (modify value option).

Both the above approaches are reflected in the following practical strategies for dealing with
outliers that are in common use:
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1. Post-stratify sample outliers by placing them in a special stratum with lower (typically unit)
weights.

2. Replace outlier value in current survey replaced by an average of its current and past (non-
outlier) values and then put it in a special stratum.

3. Force the sample weights to lie in some “acceptable” range (e.g. ±k% of selection weights).

However, there are alternative approaches one can take, where one replaces the optimal BLUP
under the working model by a more robust, but less efficient, estimator. The basic idea here is to
apply modern robust statistical concepts in estimation, replacing the non-robust linear BLUP by a
robust non-linear estimator that ‘accommodates’ sample outliers.

In order to define such an estimator, we note that all outlier robust estimation strategies involve a
bias-variance tradeoff, where some bias in the estimator is accepted in order to downweight the
influence of outliers. This downweighting of outliers decreases the variance of the estimator and
(hopefully) the mean squared error as well. However one then runs into problems with confidence
interval estimation, as we shall see.

To start, we note that there is now a well developed theory of outlier robust estimation, dating from
the seminal paper of Huber (1964), where outlier robust M-estimators for the parameters of
statistical models were first introduced. These estimators are typically defined by modifying
estimating equations to ensure that no one data value has undue influence on the estimate of a
model parameter. They are motivated by the idea that the majority of the population (and hence the
sample) follow a ‘well-behaved’ pattern of behaviour as expected under the working model, with a
small number of sample outliers or ‘contaminants’ that are ideally zero weighted in any inference
related to the working model.

Chambers (1986) extended this concept to finite population prediction and introduced the concept
of ‘representative’ outliers. These are legitimate population units (i.e. their outlying values are not
mistakes) and we have no guarantee that there are no further outliers in the non-sampled part of the
population. Clearly it is inappropriate to zero-weight representative outliers. Non-representative
outliers (mistakes or unique values) on the other hand should be either given unit weights or be
corrected (if they are due to errors) or be discarded (i.e. zero-weighted).

The basic problem is then how to deal with survey data containing representative outliers. Since
there may well be (and usually are) more representative outliers in the non-sampled part of the
population, it is inadequate to just isolate these outliers in the survey sample and, as in the post-
stratification approach described above, give them unit weights. Sample outliers provide (limited)
information about non-sample outliers. However, there are few sample outliers (by definition), so
any attempt to use ‘standard’ weighting methods to extract this information is a recipe for disaster.

3.4.2 Robust Bias Calibration

Robust bias calibration of the “delete outliers” approach is one compromise solution to this
problem. The idea here is straightforward. First estimate the finite population total of interest as if
the working model applies to all non-sample units. That is, either delete or unit weight all sample
outliers. Clearly this ‘working model’ estimator is generally biased if sample outliers are
representative, so we now add a bias calibration term to this estimator that uses the information in
the sample outliers to compensate for its bias.
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To illustrate how this approach works we consider a simple mixture model. That is, we assume that
the actual population values of Y are drawn from the two component mixture

yi = ∆ i(µ1 + σ1ε1i) + (1− ∆ i)(µ2 + σ 2ε2i)

where ∆i is a zero-one variable denoting outlier/non-outlier status respectively, with θi = pr(∆i = 1),
1−δ ≤ θi <1, µ2 >> µ1 and σ2 >> σ1, and ε1i, ε2i are independent ‘white noise’ variables.

Given a sample drawn from this mixture, we can use modern outlier robust methods to estimate µ1.
In particular, let ˆ µ 1 be a robust M-estimate of µ1, defined by the estimating equation

ψy ( ˆ σ 1
−1(yi − ˆ µ 1))s∑ = 0

where ˆ σ 1 is a robust estimate of σ1 (e.g. the median absolute deviations from the median or MAD
estimate) and ψy is the influence function underlying ˆ µ 1 - a bounded skew-symmetric function that
behaves like the identity near the origin and drops away to zero for values far from the origin. An
example is the bisquare function (Beaton and Tukey, 1974), defined by

ψy (t) = t 1− t 2 /ky
2( )2

I(−ky ≤ t ≤ ky )

where ky is a tuning constant (default = 4.5). The smaller ky, the more outlier robust is ˆ µ 1.

The initial “no non-sample outliers” estimator is then ˆ t 1y = yis∑ + (N − n) ˆ µ 1  (or the even simpler
˜ t 1y = N ˆ µ 1), which is very close (in spirit at least) to the commonly used post-stratification estimator.
It clearly assumes that there are no non-sample outliers in the population, and predicts unknown Y-
values on the assumption that all such values follow a working model consistent with the behaviour
of the non-outliers in the sample. See Rivest and Rouillard (1991) and Gwet and Rivest (1992).

This initial estimator is biased if sample outliers are representative, with

Bias(ˆ t 1y ) = (µ1 − µ2) (1−θi)r∑ .

To correct for this bias we must estimate it in some way. Suppose the mixture probabilities are
constant, i.e. θi = θ, then

Bias(ˆ t 1y ) = −(N − n)E(r ),

where r = n−1 (yi − ˆ µ 1)s∑ . An obvious “bias corrected” version of this estimator is then

ˆ t adj ,y = yis∑ + (N − n)( ˆ µ 1 + r ) = ˆ t 1y + (N − n)r .

This estimator is unbiased under the assumed mixture model for Y. Unfortunately, simple algebra
then demonstrates that it is in fact just the simple (and highly non-robust) expansion estimator.
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The problem is the bias adjustment r = n−1 (yi − ˆ µ 1)s∑ . This is computed as the mean of the ‘raw’
residuals r1i = yi − ˆ µ 1. These residuals will be ‘small’ for the well-behaved units in the sample, but
will be ‘large’ for the sample outliers. A more robust bias adjustment is the modified mean

ε = ˆ σ R n−1 ψR (r1i / ˆ σ R )
s∑ .

Here ˆ σ R  is a robust estimate of the scale of the r1i  (e.g. the MAD estimate) and ψR is a ‘prediction’
influence function that gives relatively more weight to the sample outliers than the ‘estimation’
influence function ψY underlying ˆ µ 1. A natural choice is Huber’s Proposal 3 (Huber 1964),

ψR (t) =
kR
t
−kR

t > kR

t ≤ kR

t < −kR

 
 
 

  

where the tuning constant kR is quite large, say kR = 10. A robustly calibrated estimator of the
population total is then

ˆ t rob ,y = yis∑ + (N − n)( ˆ µ 1 + ε ).

Note that this estimator is equivalent to using the standard expansion estimator with modified Y-
values:

yi
* =

n
N

yi + (1−
n
N

)( ˆ y i + ε )

where

ˆ y i =
ψY ( ˆ σ Y

−1(yi − ˆ µ 1)
yi − ˆ µ 1

 

 
 

 

 
 n−1 ψY ( ˆ σ Y

−1(y j − ˆ µ 1))
y j − ˆ µ 1s∑

 

 
 

 

 
 

−1

yi.

This robust estimator is biased (by construction). Consequently, standard large sample arguments
for confidence interval estimation based on a consistent estimator of its variance cannot be claimed
to have (even asymptotically) nominal coverage properties.

The extension of the above argument to the case where the general linear model is the “working
model” is relatively straightforward (see Chambers, 1986).

3.4.3 Outlier Robust Design

Can we use the sample design to provide protection against outliers, in the same way as it can be
used to provide protection against model misspecification? In general this is not possible, because
we have no idea a priori where outliers will occur. However, a measure of outlier robustness is
achieved by implementing a sample design where the weights wi do not vary too much from one
sample unit to another, since this minimises the opportunity for a sample outlier to ‘team up’ with a
large sample weight and hence destabilise the estimator.

Sample weights are typically functions of one or more auxiliary variables (X), and sample designs
where these weights do not vary (or at least vary little) are typically designs that are ‘balanced’ with
respect to these variables. Consequently sample designs that attempt to ensure such ‘balance’ (e.g.
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via restricted randomisation) can therefore be expected to be less outlier sensitive than designs that
place no restrictions on the sample weights.

3.4.4 A Numerical Study

This study assumed a working model corresponding to the ratio model R, where:
Eξ (yi) = βxi

Varξ (yi) = σ 2xi

and applied robustness ideas to estimation of ty in two populations. These were:

SUGAR: This consisted of 338 Queensland sugar cane farms, with Y = value of cane produced and
X = area assigned for growing cane. This population was described in the previous chapter and is
reasonably described by ratio model R.
BEEF: This population consisted of 453 beef cattle farms, with Y = income from sale of cattle and
X = number of cattle. There is clear model misspecification if the ratio model is assumed for this
population.

A simulation experiment was then carried out, with 500 independent simple random samples
selected from each population. The sample size for SUGAR was n = 50, while that for BEEF was n
= 60. For each sample, four estimation strategies were investigated. These were the ratio estimator
with a ‘misspecification robust’ estimate of the variance of this estimator (see the next Chapter for
development of this estimator, due to Royall and Cumberland, 1981), the robust bias calibrated
version of the ratio estimator (see Chambers, 1986) together with a bootstrap variance estimator
(again, this method is described in the next Chapter). This estimator used the bisquare estimation
influence function ψY (with default tuning parameter ky = 4.5) and the Huber prediction influence
function ψR. Three versions of this estimator were actually calculated, corresponding to kR = 6, 10
and 15. Bootstrap simulations were then used to construct bootstrap 95% confidence intervals for
the population total of Y.

Three estimation performance measures were calculated. The average error over the 500simulations
(AVE), the root mean squared error over the 500 simulations (RMSE), and the median absolute
deviation error over the 500 simulations (MAE). These measures are set out in the table below. In
addition, the average estimated standard error over the 500 simulations (AVSE) is also presented in
this table.

Method AVE RMSE MAE AVSE
SUGAR

Ratio -117 3733 2535 3676
Robust
kR = 6 -117 3733 2535 3634
kR =10 -117 3733 2535 3655
kR = 15 -117 3733 2535 3636

BEEF
Ratio 5768 30802 21269 26823
Robust
kR = 6 15058 26647 16974 19658
kR =10 7856 27772 17647 22444
kR = 15 5415 29995 20720 25036
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We comment on each population in turn.

SUGAR: There is nothing to choose (in terms of AVE, RMSE and MAE) between the ratio
estimator and the three robust estimators. This is comforting, since it indicates that the robust
estimators lose little efficiency when the working model is in fact reasonably valid. Furthermore, all
AVSE values ‘track’ RMSE in SUGAR.

BEEF: The ratio estimator is substantially outperformed by the three robust estimators. In
particular, the robust estimator with kR = 6 has the best RMSE and MAE performance at the cost of
a substantial bias (AVE), while the estimator with kR = 10 seems to deliver the best compromise
between AVE, RMSE and MAE. However, it is clear that for this population, AVSE underestimates
RMSE, caused in no small part by the substantial bias due to the presence of outliers.

We now turn to the coverage performance of the confidence intervals generated by the different
estimator/variance estimator combinations investigated in this study. We in fact calculated classical
“two sigma” confidence intervals as well as 95% bootstrap confidence intervals using each
estimator. Again we comment on these results separately for each population, after first displaying
them in the table below.

Method 2σ CI non-
coverage

Bootstrap-based 95% confidence intervals

OK HI LO
SUGAR

Ratio .050 .942 .022 .036
Robust
kR = 6 .056 .938 .022 .040
kR =10 .050 .936 .022 .042
kR = 15 .052 .940 .026 .034

BEEF
Ratio .092 .894 .058 .048
Robust
kR = 6 .176 .808 .190 .002
kR =10 .110 .880 .120 .000
kR = 15 .100 .892 .106 .002

SUGAR: All methods record actual coverages reasonably close to the nominal 95 per cent level.

BEEF: All methods perform poorly, with substantial undercoverage. The robust estimator with kR =
6 had the worst confidence interval coverage performance. There is also clear skewness (HI > LO)
in the coverage performance of the bootstrap confidence intervals generated by the robust
estimators, indicating a bias problem.

At this stage, the issue of how to construct valid confidence intervals in the presence of outliers
remains an open problem.

3.4.5 Practical Problems

There are substantial practical problems with adoption of the outlier robust estimators described
above. One of the most important is caused by the intrinsic non-linearity of these estimators. In
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particular, population totals estimated ‘robustly’ at a lower level of categorisation may not sum to
the value of the corresponding ‘robust’ estimate of total at a higher level of categorisation. Similar
problems arise when estimates based on derived variables (e.g. a sum of component variables) is
calculated from survey data.

Requirement that such kinds of inconsistencies do not arise therefore limit the effectiveness of the
robust procedure at certain levels of categorisation or for certain variables.
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4. Methods of Variance Estimation

In this Chapter we explore in more detail issues that arise when we wish to estimate the variability
associated with an estimate (or prediction) of a census parameter.

4.1 Robust Variance Estimation for the Ratio Estimator

When the simple ratio model R is the working model ξ, the unbiased estimator of the prediction
variance of the ratio estimator is

ˆ V ξ (ˆ t Ry ) = ˆ σ R
2 (N 2 /n)(1− n /N) x r x ( )/ x s

where

ˆ σ R
2 = (n −1)−1 yi − (y s / x s)xi( )2 / xis∑

is an ξ-unbiased estimator of the parameter σ2. However, this standard “plug-in” approach to
variance estimation is non-robust to misspecification of the variance “model” implied under ξ.

To see this, suppose the true model η for the population has Eη(yi) = βxi and Varη(yi) = σ2v(xi).
Since the mean function is unchanged from that assumed under ξ, the ratio estimator remains η-
unbiased, but now its prediction variance is

Varη (ˆ t Ry − ty ) = σ 2(N 2 /n)(1− n /N) (1− n /N)v s(x r / x s)
2 + (n /N)x r[ ].

Furthermore, under η the standard estimator for the parameter σ2 is no longer unbiased, since

Eη ˆ σ R
2 = σ 2 (v / x)s + (n −1)−1 1− v s / x s{ }[ ].

Suppose x s = x r = x . Then
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In this case the actual prediction variance of the ratio estimator under η and balanced sampling is

σ 2(N 2 /n)(1− n /N) v s + (n /N)(v r − v s)[ ] ≈ σ 2(N 2 /n)(1− n /N)v s

so the working model variance estimator ˆ V ξ (ˆ t Ry ) is biased high when v(z) < z and biased low when
v(z) > z.

Under balanced sampling, inspection of the expressions above shows that the leading term in actual
prediction variance of the ratio estimator depends on v s ∝ Eη n−1 (yi − βxi)

2

s∑( ). This suggests that

we consider an alternative variance estimator for this situation, given by
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ˆ V SRS (ˆ t Ry ) = (N 2 /n)(1− n /N)(n −1)−1 yi − (y s / x s)xi( )2

s∑ .

This is the “traditional” design-based estimator of the variance of the ratio estimator under simple
random sampling. Under η this estimator has expectation

Eη
ˆ V SRS (ˆ t Ry )( )= σ 2 N 2

n
1−

n
N

 
 
 

 
 
 v s 1+ (n −1)−1 1− 2 (vx)s

v sx s
+

(xx)s

x s
2

 
 
 

 
 
 

 

 
 

 

 
 

≈ σ 2(N 2 /n)(1− n /N)v s

which is the same as the leading term of the actual prediction variance of the ratio estimator under
η. That is, ˆ V SRS (ˆ t Ry )  is robust to misspecification (of η by ξ) provided we have balanced sampling.

What if the sample is not balanced? The leading term in prediction variance of the ratio estimator
under η is then

σ 2(N 2 /n)(1− n /N)v s(x r / x s)
2 .

We can compare this expression with the leading term in the η-expectation of ˆ V SRS (ˆ t Ry ) . We see that
ˆ V SRS (ˆ t Ry )  will tend to overestimate the actual prediction variance of the ratio estimator when x r < x s

(a situation where the ratio estimator in fact has a low variance), and will tend to underestimate this
prediction variance when the sample is such that x r > x s (a situation when the ratio estimator in fact
has a high variance). This bias can be corrected, leading to a robust variance estimator (in the sense
of being approximately unbiased under η irrespective of the “balance” of the sample) of the form

ˆ V R / rob (ˆ t Ry ) = (x r / x s)
2 ˆ V SRS (ˆ t Ry ).

Can we do better? Suppose we require our robust variance estimator that is approximately unbiased
under η to also be exactly unbiased under ξ. Here we observe that

Eξ
ˆ V R / rob (ˆ t Ry )( )= σ 2(N 2 /n)(1− n /N) x r

2 / x s( )1− n−1 sxx / x s
2{ }[ ]

while

Varξ (ˆ t Ry − ty ) = σ 2(N 2 /n)(1− n /N)(x r x / x s) .

Equating these two expressions leads to a modified version of ˆ V SRS (ˆ t Ry )  first described by Royall
and Eberhardt (1975):

ˆ V R / rob (ˆ t Ry ) = x r x / x s
2( )1− n−1 sxx / x s

2{ }[ ]−1 ˆ V SRS (ˆ t Ry ) .

See also Royall and Cumberland (1981).
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4.2 Robust Variance Estimation for Linear Estimators

A widely used class of estimators are linear in the sample Y-values, given by
ˆ t wy = wisyis∑ .

In general, the sample weight wis above can depend on the values of one or more auxiliary X-
variables and can also be sample dependent, in the sense that it can also depend on the X-values of
all the sample units (hence the “s” subscript). However, wis is not a function of the sample Y-values.

Our aim is to use the approach described in the previous section to develop an estimator for the
prediction variance of ˆ t wy  that is robust to misspecification. In this context, our working model for
the distribution of the population Y-values is the very general specification (denoted by ξ in what
follows):

Eξ(yi) = µ(xi;ω) = µi

Varξ(yi) = σ2(xi;ω) = σ i
2.

The ξ-bias of ˆ t wy  is then

Eξ
ˆ t wy − ty( )= wisµis∑ − µiU∑ .

Since µi is O(1), it follows that wis must be O(N/n) if ˆ t wy  is to be unbiased under ξ. We assume this.
The prediction variance of ˆ t wy  under ξ is then

Varξ ˆ t wy − ty( )= wis −1( )2σ i
2

s∑ + σ i
2

r∑ .

As always we also assume non-informative sampling, so a consistent estimate ˆ ω  of ω can be
calculated from sample data and a simple “plug-in” estimator of σ i

2 is then ˆ σ i
2 = σ 2(xi; ˆ ω ). This

immediately leads to a consistent estimator of the prediction variance of ˆ t wy :

ˆ V ξ ˆ t wy( )= wis −1( )2 ˆ σ i
2

s∑ + ˆ σ i
2

r∑ .

Recollect that wis is O(N/n) so the leading term in this estimated variance is its first (sample) term.

It is clear that the validity of this estimator depends on specification of σ2(xi;ω). We therefore now
develop a modified version of this estimator that remains valid even when this variance function is
misspecified.

The basic idea is exactly the same as the one used to develop a robust estimator of the prediction
variance of the ratio estimator in the previous section. We replace the leading term in the “plug-in”
estimator of variance above by a term whose validity only depends on the specification of the
model ξ being correct to first, rather than second, order.
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Suppose ˆ µ i = µ(xi; ˆ ω ) is an unbiased estimate of Eη(yi) under the (unknown) “true” model η for the
population. This implies Eη yi − ˆ µ i( )2 = Varη (yi) + O n−1( ) irrespective of the actual specification of
Varη(yi). An alternative variance estimator for ˆ t wy  is then

ˆ V ξ ,robust
ˆ t wy( )= wis −1( )2 yi − ˆ µ i( )2

s∑ + ˆ σ i
2

r∑ .

To illustrate this approach, consider the working model ξ where all units in some specified part of
the population (e.g. a stratum) are assumed to have the same mean µ and the same variance σ2.
Suppose further that we propose to estimate the total of Y for this (sub)population using the linear
estimator ˆ t wy  based on fixed weights wis. Under ξ,

Eξ
ˆ t wy − ty( )= µ wiss∑ − N( )

so the sample weights have to sum to N for unbiasedness under ξ. We assume this. The
corresponding prediction variance of ˆ t wy  is then

Varξ ˆ t wy − ty( )= σ 2 wis −1( )2

s∑ + (N − n)( ).
The standard approach to estimating this prediction variance is to calculate an unbiased estimator of
µ (under ξ) using the weighted average

ˆ µ w = N−1 wisyis∑

and then note that

Eξ yi − ˆ µ w( )2 = 1− 2 wis

N
+

1
N 2 w js

2

s∑ 
 
 

 
 
 σ 2.

Consequently an unbiased estimator of σ2 under ξ is

ˆ σ w
2 =

1
n

1− 2 wis

N
+

1
N 2 w js

2

s∑ 
 
 

 
 
 

−1

yi − ˆ µ w( )2

s∑

implying the following unbiased estimator of the prediction variance of ˆ t wy  under ξ:

ˆ V ξ ˆ t wy( )= ˆ σ w
2 wis −1( )2

s∑ + (N − n)( ).
However, this estimator will be biased if the assumption of constant variance for the yi is incorrect.

Suppose now that the true variance of unit i in the population is γ i
2. To distinguish this case from

the constant variance model ξ, we use a subscript of η below. The true prediction variance of ˆ t wy

will then be

Varη ˆ t wy − ty( )= wis −1( )2γ i
2

s∑ + γ i
2

r∑ .
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A robust variance estimator for ˆ t wy  (in the sense of being consistent under both ξ and η) is then

ˆ V ξ ,robust
ˆ t wy( )= wis −1( )2 yi − ˆ µ w( )2

s∑ + (N − n) ˆ σ w
2 .

It is not difficult to see that this robust variance estimate will not be exactly unbiased under ξ.
However, the slightly modified alternative below is:

ˆ V ξD
ˆ t wy( )=

wis −1( )2 yi − ˆ µ w( )2

1− 2 wis

N
+

1
N 2 w js

2

s
∑

 

 

 
 
 

 

 

 
 
 

s∑ + (N − n) ˆ σ w
2 .

In particular, this alternative variance estimator is unbiased for the prediction variance of ˆ t wy  under
the constant variance model ξ and approximately unbiased under the more general model η.

Application of this robust approach to prediction variance estimation for the separate ratio estimator
is discussed in Royall and Cumberland (1981). This leads to the variance estimator

ˆ V ξD (ˆ t RSy ) =
Nh

2

nh

 

 
 

 

 
 

x h
x sh

−
nh

Nh

 

 
 

 

 
 

x h
x sh

 

 
 

 

 
 

1
nh

(yi − ˆ β h xi)
2

1− xi /nh x sh( )
 
 
 

 
 
 sh

∑h∑

≈
Nh

2

nh

 

 
 

 

 
 

x h
x sh

 

 
 

 

 
 

2
1
nh

(yi − ˆ β h xi)
2

1− xi /nh x sh( )
 
 
 

 
 
 sh

∑h∑ .

4.3 The Ultimate Cluster Variance Estimator

Recollect model C where the population elements all had the same mean and variance and were
grouped into clusters, with all elements in the same cluster equi-correlated. This homogeneity
within clusters means that sample weights will be the same for all elements in a cluster and so a
general linear estimator takes on the form:

ˆ t Cy = wg yisg
∑s∑ =

1
q

ˆ t Cgys∑

where

ˆ t Cgy = qwg yisg
∑ = qwgmg y sg

can be interpreted as the predictor of the overall population total ty based just on the sample data
from sample cluster g. Under C, unbiasedness of ˆ t Cy  requires that wgmgs∑ = N , while

unbiasedness of ˆ t Cgy  requires wgmg = N/q. Since this is not generally the case, these cluster specific
predictors are typically biased.

However, it is also often the case that the cluster sample sizes mg, and hence the cluster weights wg,
vary little from cluster to cluster. In such cases the ˆ t Cgy  will all be approximately unbiased for ty and



52

will have approximately the same variance. This suggests that we can estimate the variance of the
overall predictor ˆ t Cy  from the variability of the ˆ t Cgy .

Since the ˆ t Cgy  are uncorrelated with one another, this suggests a variance estimator for ˆ t Cy  of the
form

ˆ V UC (ˆ t Cy ) =
1

q(q −1)
ˆ t Cgy − ˆ t Cy( )2

s∑ .

This estimator is often referred to as the ultimate cluster variance estimator. It is straightforward to
calculate and does not require an estimate of the intracluster correlation ρ. We also observe that it is
an estimator of the variance of ˆ t Cy , not its prediction variance. Hence it is only appropriate when the
sampling fraction is small, as is the case in most social surveys.

Under model C (denoted by ξ below)

Eξ
ˆ V UC (ˆ t Cy )( )= Varξ (ˆ t Cy ) +

µ2

q(q −1)
qmgwg − N{ }2

s∑ .

That is, the ultimate cluster variance estimator is generally upwardly biased for the actual variance
of ˆ t Cy . Furthermore, this bias depends on the bias of the cluster specific predictors ˆ t Cgy , in the sense
that it vanishes when these predictors are themselves unbiased. It is easy to see that this occurs if
the mg are the same for all g ∈ s, in which case we must have wg = N/n.

We can “bias correct” the ultimate cluster variance estimator. To see this, define ˆ µ Cy = N−1ˆ t Cy . Since
Eξ ( ˆ µ Cy ) = µ , it follows

Eξ
ˆ V UC (ˆ t Cy ) −

ˆ µ Cy
2

q(q −1)
qmgwg − N( )2

s∑
 

 
 

 

 
 = KsVarξ (ˆ t Cy )

where

Ks =1−
1

N 2q(q −1)
qmgwg − N( )2

s∑ .

An unbiased estimator of Varξ( ˆ t Cy) is therefore

ˆ V UC
* (ˆ t Cy ) = Ks

−1 ˆ V UC (ˆ t Cy ) −
ˆ µ Cy

2

q(q −1)
qmgwg − N( )2

s∑
 

 
 

 

 
 .

Like the standard ultimate cluster variance estimator, ˆ V UC
* (ˆ t Cy )  is a conservative estimator of the

prediction variance of ˆ t Cy , since
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Varξ (ˆ t Cy − ty ) = Varξ (ˆ t Cy ) −σ 2
2 wgmg 1+ Mg −1( )ρ{ }s∑
− Mg 1+ Mg −1( )ρ{ }U∑

 

 

 
 

 

 

 
 .

The term in square brackets is a monotonically increasing function of ρ, ranging from a minimum
value of σ2N when ρ = 0 to a maximum value approximately equal to σ2N M  at ρ = 1. Here M  is
the population average of the Mg.

A version of this bias corrected ultimate cluster variance estimator for the more realistic case where
the sample weights vary from element to element within a cluster (e.g. after post-stratification) is
given by

ˆ V UC
* (ˆ t Cy ) =

1
Ksq(q −1)

ˆ t Cgy − ˆ t Cy( )2
− ˆ µ Cy

2 qmgw g − N( )2{ }s∑
where

w g = mg
−1 wisg
∑

ˆ µ wg = wiyisg
∑ / wisg

∑
ˆ t Cgy = q wiyisg

∑ = qmgw g ˆ µ wg

Ks =1−
1

N 2q(q −1)
qmgw g − N( )2

s∑ .

4.4 Variance Estimation for Non-Linear Estimators

So far we have considered the case of variance estimation for linear estimators. We now consider
variance estimation for more general non-linear estimators. To start, we consider estimators of
differentiable functions of population totals.

Here the target census value is θ = f(t1, t2, ... , tm), which is assumed to be a differentiable function
of the population totals  t1, t2, ... , tm of m Y-variables. The natural estimate of θ is the “plug-in”
estimator ˆ θ  = f( ˆ t 1, ˆ t 2, ... , ˆ t m). We note that if the component estimates ˆ t 1, ˆ t 2, ... , ˆ t m  are unbiased,
then ˆ θ  will be approximately unbiased in large samples.

A first order approximation to the sample error of ˆ θ  is

  

ˆ θ −θ = f (ˆ t 1,L, ˆ t m ) − f (t1,Ltm ) ≈
∂f
∂ta

(ˆ t a − ta )
a=1

m

∑

where ∂f /∂ta  is the partial derivative of f with respect to its ath argument, evaluated at t1, t2, ... , tm.
A first order approximation to the variance of this sample error is

Var ˆ θ −θ( )≈
∂f
∂ta

 

 
 

 

 
 

∂f
∂tb

 

 
 

 

 
 Covξ (ˆ t a − ta , ˆ t b − tb )

b=1

m

∑
a=1

m

∑ .

An estimate of this first order approximation is therefore



54

ˆ V ( ˆ θ ) ≈
∂f
∂ˆ t a

 

 
 

 

 
 

∂f
∂ˆ t b

 

 
 

 

 
 ˆ C ξ (ˆ t a , ˆ t b )

b=1

m

∑
a=1

m

∑

where ˆ C ξ (ˆ t a , ˆ t b ) is an estimate of the covariance between the prediction errors of ˆ t a  and ˆ t b  and
∂f /∂ˆ t a  is the partial derivative of f with respect to its ath argument, evaluated at ˆ t 1, ˆ t 2, ... , ˆ t m .

Note that the covariance estimate ˆ C  can be calculated using any of the different variance estimation
methods described so far.
An important special case is where the estimators ˆ t 1, ˆ t 2, ... , ˆ t m  are all linear. Then

Varξ ˆ θ −θ( )≈ Varξ ˆ t z − tz( )≈ Varξ ˆ t ̂  z − tz( )

where tz is the population total of the linearised variable zi =
∂f
∂ta

 

 
 

 

 
 yai

a=1

m

∑  and

ˆ t z = wiszis∑ = wis
∂f
∂ta

 

 
 

 

 
 yai

a=1

m

∑
 

 
 

 

 
 

s∑

ˆ t ̂ z = wisˆ z is∑ = wis
∂f
∂ˆ t a

 

 
 

 

 
 yai

a=1

m

∑
 

 
 

 

 
 

s∑ .

A first order approximation to the variance of ˆ θ  can be computed as the estimated variance of the
sample error of ˆ t ̂  z , treating the estimated quantities ˆ z i  as “observed” quantities (Woodruff, 1971).

Many census parameters are defined as solutions to population level estimating equations (e.g. the
finite population median). “Plug-in” methods are also used here to calculate the required estimates,
and Taylor series linearisation is used to estimate the variance of these estimators. Thus θ is defined
by a population level estimating equation if it is a solution to

H(θ) = f (y i;θ)
U∑ = 0

where f is assumed to be a differentiable function of θ. To estimate this quantity, we replace the
population parameter H(θ) by a “linear” estimator ˆ H w(θ)  and then estimate θ by ˆ θ , where

ˆ H w( ˆ θ ) = wis f (y i; ˆ θ )
s∑ = 0.

Variance estimation in this case is based on Taylor series linearisation

0 = ˆ H ( ˆ θ ) ≈ ˆ H (θ) +
∂ ˆ H 
∂θ

 

 
 

 

 
 ( ˆ θ −θ) = ˆ H (θ) + ( ˆ θ −θ) wis

∂f (y i;θ)
∂θs∑

from which we obtain the first order approximation

Varξ ( ˆ θ −θ) ≈ wsi
∂f (y i;θ)

∂θs∑ 
 
 

 
 
 

−1

Varξ ( ˆ H (θ)) wis
∂f (y i;θ)

∂θs∑ 
 
 

 
 
 

−1

.
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The so-called “sandwich” estimator of variance is then

ˆ V ξ ( ˆ θ ) = wsi
∂f (y i;θ)

∂ ˆ θ s∑ 
 
 

 
 
 

−1
ˆ V ξ ( ˆ H ( ˆ θ )) wis

∂f (y i;θ)
∂ ˆ θ s∑ 

 
 

 
 
 

−1

which corresponds to evaluating the partial derivatives at ˆ θ , and replacing the variance term by an
appropriate “plug-in” estimate defined by replacing θ by ˆ θ  in

ˆ V ξ ( ˆ H (θ)) = ˆ V ξ wis f (y i;θ)
s∑( )= ˆ V ξ wiszi(θ)

s∑( )
where zi(θ) = f(yi; θ) is treated as just another population Y-variable.

4.5 Replication-Based Methods of Variance Estimation

The definition of the census parameters of interest may be so complex that application of Taylor
series linearisation methods for variance estimation is difficult, if not impossible (e.g. so-called
“chain ratio” indexes that are often estimated using business survey data). In such cases we can use
alternative variance estimation methods that are “simple” to implement, but are typically
numerically intensive.

The basic idea behind these methods is simple. We “simulate” the variance of a statistic by

(i) making repeated draws from a distribution whose variance is related in a simple (and
known) way to the variance of interest;

(ii) empirically estimating the variance of this “secondary” distribution;
(iii) adjusting this variance estimate so that it is an estimate of the variance of interest.

The simplest version of this approach is the Random Groups Variance Estimator. Its origin is in the
idea of interpenetrating samples (Mahalonobis,1946; Deming, 1960), where the actual sample
selected is made up of G independent replicate or interpenetrating subsamples, each one of which is
“representative” of the population, being drawn according to the same design and with the same
sample size n/G.

Let ˆ θ g  be the estimate of the θ based on the gth replicate sample The overall estimate is then
ˆ θ = G−1 ˆ θ gg∑ . By construction, { ˆ θ g , g =1, ... , G} are independent and identically distributed and so

we can estimate the variance of their (common) distribution by their empirical variance around their
average, the overall estimate ˆ θ . The variance of ˆ θ  is then this “replicate variance” divided by the
number of replicates, G. We therefore estimate the variance of ˆ θ  by simply dividing this empirical
variance by G, leading to

ˆ V rep ( ˆ θ ) =
1

G(G −1)
ˆ θ g − ˆ θ ( )2

g=1

G

∑ .

The idea still works even if the replicate estimates are not identically distributed. All that is required
is that they are independent of one another, and each is unbiased for θ.
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The main problem here is that replicated sample designs are rare. Consequently what is often done
is to construct the replicates after the sample is selected, by randomly allocating sample units to G
groups in such a way that each group is at least approximately independent of the other groups.

This allocation is not as straightforward as it sounds. For stratified designs we can do random
grouping within strata, provided there is sufficient sample size within each stratum to carry this out.
If not, then random grouping can be applied to the sample as a whole, preserving the strata when
splitting the sample between the groups. For multistage designs the allocation is typically carried
out at PSU (primary sampling unit) level. In addition, the “average” estimate ˆ θ  in the variance
formula above is often replaced by the “full sample” estimate of this quantity.
As we noted with the ultimate cluster variance estimator, the replication variance estimator is an
estimator of the variance of ˆ θ . It is not an estimator of the prediction variance of this estimator.
Consequently the variance estimate does not go to zero as the sample size approaches the
population size. This is of no great concern when sample sizes within strata are small compared to
stratum population sizes (population-based surveys). However, in many business surveys, sample
sizes within strata can be a substantial fraction of the strata populations. In such cases, it is standard
to multiply the stratum level replicated groups variance estimates by appropriate finite population
correction factors.

A problem with the replication-based approach to variance estimation is the stability of these
estimates. The more groups there are, the more stable these variance estimates are. However, the
more groups there are, the harder it is to “randomly group” the sample. This leads naturally to the
idea of using overlapping (non-independent) groups.

There are essentially two approaches to using overlapping groups. The first is Balanced Repeated
Replication, where groups are formed using experimental design methods so that covariances
induced by the same unit belonging to different groups “cancel out” in the (non-overlapping)
random groups variance formula. This can be quite difficult to accomplish in general. The method
is typically restricted to certain types of multistage designs, with G = 2 and is rarely used in
business surveys. See Wolter (1985) and Shao and Tu (1995).

The other, much more commonly used, approach is Jackknife variance estimation. Here again the
sample is divided into G groups, but this time the G estimates are computed by “dropping out” each
of the G groups from the sample in turn. The variability between these dependent estimates is then
used to estimate the variability of the overall estimate of θ.

Let ˆ θ (g )  be the estimator of θ based on the sample excluding group g. The Jackknife estimator of
variance is then given by

ˆ V jack( ˆ θ ) =
G −1

G
ˆ θ (g ) − ˆ θ ( )2

g=1

G

∑ .

There are two types of jackknife. The Type 1 jackknife is defined by ˆ θ  = average of the ˆ θ (g ) . The
Type 2 jackknife is defined by ˆ θ  = “full sample” estimate of θ. Note that the ANOVA identity
implies that the Type 2 jackknife will be more conservative (produce larger estimates of variance)
than the Type 1 jackknife.

Some important points about applying the jackknife method in practice are:
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1. The jackknife variance estimate is typically computed at PSU level in multistage samples.
That is, the G groups are defined as groups of PSUs.

2. The most common type of jackknife is when G is equal to the number of PSU’s in the
sample, that is one PSU is dropped from sample each time a value of ˆ θ (g )  is calculated.

3. Like the random groups variance estimate, the jackknife variance estimate does not include
a finite population correction. This needs to be applied separately.

There can be a heavy computational burden when G = n in the jackknife so it is sometimes
convenient to calculate an approximation that can be computed in one “pass” of the sample data.
This is the so-called linearised jackknife and is defined by essentially replacing ˆ V jack ( ˆ θ ) by a first
order Taylor series approximation to it.

To start, we make the following assumptions:

(i) Single stage sampling.

(ii) A superpopulation model ξ under which Eξ(yi) = µi for i ∈ s.

We first approximate ˆ θ  by ˆ θ = ˆ θ (µ) +
∂ ˆ θ 
∂yi

 

 
 

 

 
 

y=µ

(yi − µi)s∑ , where µ is the n-vector of expected

values for the sample values y and ˆ θ (µ)  is the value of ˆ θ  when these sample Y-values are replaced

by µ. Similarly, we approximate ˆ θ ( i)  by ˆ θ ( i) = ˆ θ ( i)(µ( i)) +
∂ ˆ θ ( i)

∂y j

 

 
  

 

 
  

y ( i ) = µ ( i )

(y j − µ j )j≠ i∈s∑ , where µ(i) = µ

with the expected value for yi deleted, ˆ θ ( i)  = estimate of θ based on the sample excluding yi and
ˆ θ ( i)(µ( i))  = ˆ θ ( i)  evaluated at µ(i).

Finally, we need two extra assumptions:

(1) ˆ θ (µ) = ˆ θ ( i)(µ( i)) = θ0 .

(2) ∂ ˆ θ 
∂y j

 

 
  

 

 
  

y=µ

=
n

n −1
∂ ˆ θ ( i)

∂y j

 

 
  

 

 
  

y( i ) =µ ( i )

.

We can then replace the approximation to ˆ θ ( i)  above by

ˆ θ ( i) =
n

n −1
ˆ θ − ∂ ˆ θ 

∂yi

 

 
 

 

 
 

y=µ

(yi − µi)
 
 
 

  

 
 
 

  
−

θ0

n −1
.

This expression can be calculated for every unit in sample in one “pass” of the data. Its use in the
jackknife variance estimator formula then leads to the linearised Type 1 jackknife variance
estimator.
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ˆ V jack,lin
(1) ( ˆ θ ) =

n
n −1

∂ ˆ θ 
∂yi

 

 
 

 

 
 

y= ˆ µ 

(yi − ˆ µ i) −
1
n

∂ ˆ θ 
∂y j

 

 
  

 

 
  

y= ˆ µ 

(y j − ˆ µ j )s∑
 
 
 

  

 
 
 

  

2

s∑

where ˆ µ  is the full sample estimate of µ. The linearised Type 2 jackknife variance estimator is
obtained similarly after replacing θ0 by ˆ θ :

ˆ V jack,lin
(2) ( ˆ θ ) =

n
n −1

∂ ˆ θ 
∂yi

 

 
 

 

 
 

y= ˆ µ 

(yi − ˆ µ i) − ˆ θ n2 − 3n +1
n(n −1)

 

 
 

 

 
 

 
 
 

  

 
 
 

  

2

s∑ .

Finally, we briefly describe application of the bootstrapping idea to variance and confidence
interval estimation in surveys. For many sample designs sample sizes are too small for central limit
behaviour to be applicable (e.g. fine strata containing relatively few units) and the distribution of
the sample error may be quite non-normal. Bootstrapping is then a way of estimating the sampling
distribution directly in such cases.

As usual, let θ denote the census parameter of interest. To simplify presentation, we assume that θ
is defined in terms of the population values of a single Y-variable with superpopulation distribution
specified by a general model where

Eξ(yi) = µ(xi;ω) = µi

Varξ(yi) = σ2(xi;ω) = σ i
2

where ˆ ω  is a model-unbiased estimator of ω calculated from the sample data. Let {rstd,i; i ∈ s} then
be the set of studentised residuals generated by the sample data under this model, and satisfying
Eξ(rstd,i) = 0 and Varξ(rstd,i) = 1. The steps in the bootstrap procedure are then

1. Generate N bootstrap residuals { ri
*; i ∈ U} by sampling at random and with replacement N

times from the n studentised residuals {rstd,i; i ∈ s}.
2. Generate a bootstrap realisation of the population Y-values: yi

* = µ(xk; ˆ ω ) + σ(xk; ˆ ω )ri
* ; i ∈ U.

3. Compute a bootstrap estimate ˆ θ *  of θ based on the values { yi
*; i ∈ s}, together with the

actual value θ* of θ for the bootstrap population. The bootstrap realisation of the sample
error is then ˆ θ *  - θ*.

4. Repeat steps 1 - 3 above a large number of times, thus generating a distribution of bootstrap
sample errors. Denote the (known) mean of this bootstrap distribution by E*( ˆ θ *  - θ*), and its
(known) variance by Var*( ˆ θ *  - θ*).

The bootstrap estimate of  θ is given by ˆ θ B = ˆ θ + E *( ˆ θ * −θ*). The bootstrap estimate of variance (of
the bootstrap estimate) can be calculated as Var*( ˆ θ *  - θ*). However, this is typically an
underestimate since it does not take into account the error in estimating ω. It is better to rescale the
bootstrap sample error distribution so that its variance is the larger of Var*( ˆ θ *  - θ*) and an estimate
of the variance which allows for error in estimation of ω (e.g. a jackknife estimate). Note that if ˆ θ 
represents a “best” estimate of θ, then the bootstrap sample error distribution can be centred at zero
prior to this rescaling.

A 100(1 - α)% confidence interval for θ can be “read off” from the final bootstrap sample error
distribution as
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ˆ θ B − Q*(α
2

), ˆ θ B + Q*(1−
α
2

)
 
 
 

 
 
 

where Q*(γ) denotes the γ-th quantile of this distribution.

Note that the bootstrap procedure defined above depends on correct specification of the variance
function σ�(x;ω). A robust model-based bootstrap can be defined by replacing the studentised
residuals by “raw” residuals rraw,i = yi - µ(xi; ˆ ω ). The remaining steps in the bootstrap procedure are
unchanged (Chambers and Dorfman, 1994).
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5. Estimation for Multipurpose Surveys

The theory developed in the previous chapters largely assumed a single scalar auxiliary variable X.
The exception to this was stratified estimation where X was implicitly defined as a mix of stratum
indicators and (for ratio and regression estimation) a single size variable. In general, however, we
may have more than one size variable and many different “types” of stratifiers (e.g. regional and
industry indicators). In such situations we need to consider models where X is a vector. This chapter
therefore focuses on the realistic situation where X is a mix of stratum identifiers of different types
and size variables corresponding to different measures of activity of a population unit and where it
is reasonable to link the survey variable Y and this vector X via a working model corresponding to
the general linear model defined earlier. In particular, the aim is to explore practical issues
associated with employing sampling weights based on this type of multiple regression model.

To start, we define y to be the N-vector of population values of some characteristic of interest,
whose total ty is to be estimated. Associated with these population units we assume there exists a
known matrix X defined as the N × p matrix of values of p auxiliary variables. This matrix is
assumed to be of full rank. As always we assume uninformative sampling and full response (or
uninformative nonresponse).

Our working model is the general linear model, defined by y = Xβ + ε  where Eξ(ε) = 0 and Varξ(ε)
= σ2V, where V = V(X) is a known positive definite matrix, partitioned conformably into sample
and non-sample submatrices as:

V = Vss Vsr
Vrs Vrr

 
  

 
  .

We consider a general linear estimator for the population total of Y based on sample weights that
are fixed for the sample units (i.e. they do not vary for different Y-variables). This is of the form

ˆ t wy = wis(X)yis∑ = ′ w sy s .

5.1 Calibrated Weighting

A common requirement for such general purpose sample weights is that they are calibrated on a set
of “benchmark” variables. That is, when sampled values of these variables are “weighted up”, they
recover the known population totals of these variables.   If these benchmark variables are a subset of
the variables defining X, then it is easy to see that any set of weights that leads to an unbiased
estimator (or predictor) of ty under this working model is also calibrated. In fact, these weights, by
definition, must be calibrated on all the variables defining X, since the unbiasedness condition
implies

Eξ
ˆ t y − ty( )= Eξ ′ w sy s − ′ 1 y( )= ′ w sx s − ′ 1 X( )β = 0

which is satisfied if and only if the calibration condition, ′ w sx s = ′ 1 X, is satisfied. That is, a set of
weights that are calibrated with respect to X define an unbiased estimator for ty under the model
Eξ(y|X) = Xβ .
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Since unbiasedness (i.e. calibration) is a rather weak condition, we consider “efficient” unbiased
weights. Recollect that the weights defining the Best Linear Unbiased Predictor (BLUP) of ty under
the general linear model (Royall, 1976) are given by

wL = 1s + ′ H L ′ X 1 − ′ X s1s( )+ Is − ′ H L ′ X s( )Vss
−1Vsr1r

where Is is the identity matrix of order n, 1 is a N-vector of one’s, 1s is a n-vector of one’s, 1r is a
(N-n)-vector of one’s and HL = ′ X sVss

−1Xs( )−1
′ X sVss

−1.

We use these weights to motivate a family of “linear unbiased” (LU) weights In order to do so we
observe that HLXs = Ip  (identity matrix of order p), so we consider all weights of the form

wH = 1s + ′ H ′ X 1 − ′ X s1s( )+ Is − ′ H ′ X s( )Vss
−1Vsr 1r

where H is any matrix that satisfies HXs = Ip . Any set of weights that can be written in this form
will be referred to as a set of LU weights. Such weights are calibrated on X since ′ X swH = ′ X 1 and
hence define an unbiased estimator of ty under the working linear model.

5.2 Nonparametric Weighting

The linear model assumption in the previous section may be going too far. In such a situation, the
traditional nonparametric approach uses weights defined by the n-vector of sample inclusion
probabilities. These are weights of the form wπ = π

s

−1 (n-vector of inverse sample inclusion
probabilities). The resulting estimator is the well-known Horvitz-Thompson estimator (HTE), ˆ t πy .

The HTE lacks a model-based justification. However, model-based nonparametric sample weights
(Kuo, 1988) can also be defined. This corresponds to replacing the parametric general linear
regression model by nonparametric nonlinear regression model, defined in terms of a single scalar
auxiliary variable X, leading to an estimator of ty of the form

ˆ t fy = yis∑ + ˆ f (xi)r∑

where ˆ f (xi)  is a suitable nonparametric estimate of E(yi|Xi). A simple choice is the Nadaraya-
Watson estimate (a locally weighted average) defined by

ˆ f (x) = K B−1(x − xi)( )s∑( )−1
K B−1(x − xi)( )yis∑( )

where K is a “kernel” function (typically a density function) and B is the bandwidth of the
estimator. The weights associated with this estimator are given by wf = 1s + ms, where

mi = K B−1(x j − xi)( ) K B−1(x j − xk )( )k ∈s∑( )−1 
  

 
  j ∈r∑ .

Each mi above can be interpreted as a measure of how many non-sample units are “close” to the
corresponding sample unit in X-space. This also helps one understand when inverse probability
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weighting works – i.e. when π i
−1 is a “count” of the number of population units that are “like” the ith

sample unit. In particular, the HTE can be expected to fail when this interpretation is violated.

5.3 Calibrating Nonparametric Weights

Unfortunately, in general neither the HTE nor the nonparametric estimator described above are
calibrated on X, so these nonparametric estimators are biased under the general linear model. There
are two general approaches to remedying this situation.

The first approach (Deville and Särndal, 1992) is to choose sample weights that are “close” to the
nonparametric weights but at the same time are unbiased under the general linear model (i.e.
calibrated on X). In order to develop this approach we require a metric for “closeness”. We choose
the Euclidean metric Q = (ws − w f ′ ) Ωs(ws − w f ) , where Ωs is a positive definite diagonal matrix of
order n.

Minimising Q subject to calibration leads to sample weights

w f + ′ H Ω( ′ X 1− ′ X sw f )

where HΩ is the LU matrix HΩ = ′ X sΩs
−1Xs( )−1

′ X sΩs
−1. Hence we can generalise by replacing HΩ

above by an arbitrary LU matrix H, which leads to weights of the form

wHf = w f + ′ H ( ′ X 1− ′ X sw f ).

Observe that such weights are calibrated on X for any LU matrix H. Also, setting wf = π s
−1 leads to

Generalised Regression (GREG) estimator (SSW).

The second approach tackles the problem from the other end. The idea here is that we want to use a
set of diagonal LU weights, wH = 1s + ′ H ( ′ X 1 − ′ X s1s) defined by some LU matrix H. Such weights
are calibrated on X and hence define an unbiased estimator of ty under assumed linear model.
However, suppose this model does not actually fit our data. Can we protect ourselves against bias
due to potential model misspecification?

The solution is to nonparametrically “bias calibrate” the LU estimator (Chambers, Dorfman and
Wehrly, 1993). We use the sample residuals to compute a nonparametric estimate of the bias, and
then subtract this bias estimate from the original LU estimate. Under LU weighting, fitted values
are defined by ˆ y s = XsHy s , with residuals rs = (Is − ′ X sH)y s . The nonparametrically bias calibrated
weights then satisfy

wHm = wH + (Is − ′ H ′ x s)ms

= 1s + ′ H ( ′ x 1 − ′ x s1s) + (Is − ′ H ′ x s)(w f − 1s)
= w f + ′ H ( ′ x 1 − ′ x sw f )
= wHf .

That is, we end up using the same calibrated weights as under the first approach. In other words,
parametrically bias calibrating a nonparametric estimator is the same as nonparametrically bias
calibrating a parametric estimator.
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5.4 Problems Associated With Calibrated Weights

Since calibration is equivalent to unbiasedness under a general linear model specified by X, it is
immediately clear that overspecification of X (i.e. introduction of too many calibration constraints)
will lead to a loss in efficiency. The evidence for this is an increase in the variability of the sample
weights as the number of constraints increases. Thus, suppose X contains an intercept term and V is
the identity matrix. Then adding an extra column z to X (i.e. changing X to [X z]) increases the
variance of the BLUP weights by G1

2( ′ G 2G2)−1, where G1 = ′ 1 r(Xr( ′ X sXs)
−1 ′ X szs − zr )  and

G2 = zs − Xs( ′ X sXs)
−1 ′ X szs .

That is, the greater the “size” p of the linear model, the greater the variability of a set of LU weights
based on that model. Equivalently, the more calibration constraints one imposes, the higher the
variability in the resulting set of sample weights. This increased variability usually leads to
“outlying” weights, particularly weights that are substantially negative and hence the possibility of
negative estimates for strictly positive quantities, especially in domain analysis. It also results in
larger standard errors. (As an aside we note that BLUP type LU weights are less liable to be
negative than GREG type calibration weights.)

This problem is well known. Huang and Fuller (1978) describe an algorithm that numerically
searches for strictly positive calibrated weights. In contrast, Deville and Särndal (1992) suggest
replacing the Euclidean Q metric by alternative metrics that guarantee positive weights. However,
we then lose the natural interpretability of Q. Also, there is then no finite sample theory (only
recourse to asymptotic arguments). Bankier, Rathwell and Majkowski (1992) on the other hand
adopt a more pragmatic approach, reducing p (removing calibration constraints), until all
(calibrated) weights are strictly positive.

Other approaches have focussed on minimum mean squared error rather than minimum variance.
Silva and Skinner (1997) search for lower mean squared error by using the sample data to suggest
appropriate variables to include in X rather than by including all possible benchmark variables in
this matrix (smaller p - less likely to get negative weights). However, this has the disadvantage of
requiring that each survey variable have its own set of sample weights. Bardsley and Chambers
(1984) take a different approach, searching for lower mean squared error by “ridging” X-based
BLUP weights in order to obtain strictly positive weights. This allows some bias since ridged
weights are not exactly calibrated.

Chambers (1996) extends this ridge weighting approach to include nonparametric bias calibration.
Thus, one starts with an initial set of (nonparametric) weights wf and then seeks a modified set of
weights ws that minimises the penalised Euclidean metric:

(ws − w f ′ ) Ωs(ws − w f ) +
1
λ

( ′ x 1 − ′ x sΩs ′ ) C( ′ x 1 − ′ x sΩs) .

Here λ ιs a positive scalar “ridge” parameter and C is a diagonal matrix of order p whose entries
reflect

(i) the relative “importance” attached to each of the p calibration constraints;
(ii) the different scales of measurement for the benchmark variables in X.

The solution to this optimisation problem is the vector of ridged weights wλ = w f + ′ G λ( ′ X 1− ′ X sΩs)

where Gλ = λC−1 + ′ X sΩs
−1Xs( )−1

′ X sΩs
−1 is a “ridged” LU matrix. As λ ↓ 0, the ridged weights become
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standard calibrated weights based on the LU matrix ′ X sΩs
−1Xs( )−1

′ X sΩs
−1, while as λ ↑ ∞, the ridged

weights reduce to the uncalibrated weights wf (provided all elements of C are strictly positive and
finite).

Zeroing some components of C allows ridge weights to smoothly interpolate between calibration
weights under a “large” model defined by X and calibration weights under a “small” model
specified by the subset of X defined by these “zeroed” components. Thus ridging can be interpreted
as a smooth reduction in the dimension of the model.

Finally we note that ridged GREG weights are easily obtained by substituting π s
−1 for wf and

Ωsdiag(π s
−1) for Ωs.

5.5 A Simulation Analysis of Calibrated and Ridged Weighting

In order to illustrate the behaviour of the various calibrated and ridged weighting methods described
above, we reproduce results from a simulation study reported in Chambers (1986). The target
population here is a group of 904 cropping, livestock and dairy farms that were surveyed in
Australia in the 1980s. The scatterplots below show the distribution of the different economic
variables that were measured for these farms plotted against relevant “size” variables that were also
measured for these farms.
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Total incom

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

0 100000 200000 300000 400000 50000

DSE

The “framework” variables available for these farms are set out in the following table.

ASIC Unique industry classification for each farm
181 Wheat growing
182 Wheat growing + Sheep Production
183 Wheat growing + Beef cattle production
184 Sheep + Beef cattle production
185 Sheep production
186 Beef cattle production
187 Dairy farm

State State/Territory in which farm is located
NSW New South Wales
VIC Victoria
QLD Queensland
SA South Australia
WA Western Australia
TAS Tasmania
NT Northern Territory

Region Identifier for 39 geographically defined regions (nested within
State)

DSE Unique size measure (Dry Sheep Equivalent) for a farm. Defined as
a linear combination of the outputs from the farm

In addition we assume a set of benchmark variables, as set out in the following table. These are
variables that are measured on the sample and for which population totals are assumed known.

Wheat area Area (hectares) sown to wheat during the year
Beef number Number of beef cattle on the farm at the end of the year
Sheep number Number of sheep on the farm at the end of the year
Dairy number Number of dairy cattle on the farm at the end of the year

There are five survey variables, as shown on the preceding scatterplots. These are shown on the
following table.
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Wheat income Annual income from sale of wheat
Beef income Annual income from sale of beef cattle
Sheep income Annual income from sale of wool and sheep
Dairy income Annual income from sale of milk products
Total income Annual income from all four activities above

The simulation study involved a number of different sampling methods, designed to mimic actual
sampling reality. In all cases 1000 samples were drawn independently according to each design.
These are described below.

Simple Random
Sampling

Random sample of size n = 100 taken without replacement from N =
904. Sample rejected if missing one or more farms from each of the
seven ASIC industries, or without production in one of the four farm
outputs (wheat, sheep, beef or dairy).

Size
Stratification +
“Compromise”
Allocation

Independent random samples taken from 4 size strata, defined by
values of the size variable DSE. Stratum boundaries defined so that
total DSE approximately the same in each stratum. Stratum
allocations defined by averaging proportional and Neyman
allocation (based on DSE), resulting in the design:

Stratum DSE Range Nh nh
1 200 - 9499 665 50
2 9500 - 24999 166 25
3 25000 - 99999 52 18
4 100000 + 12 7

9 farms with DSE < 200 were excluded from selection. Sample
rejected if missing one or more farms from each of the seven ASIC
industries, or without wheat, sheep, beef or dairy production.

Size
Stratification +
“Optimal”
Allocation

Same stratification and sample rejection rule as for size stratification
with “compromise” allocation, but with Neyman allocation based on
DSE and with the “top” stratum completely enumerated.

Stratum DSE Range Nh nh
1 200 - 9499 665 30
2 9500 - 24999 166 29
3 25000 - 99999 52 29
4 100000 + 12 12

Finally, we show the different estimation methods used with the samples obtained via these three
designs. These estimation methods were based on two working models. The first, denoted model
“S”, defined X purely in terms of the four benchmark variables defined above (plus an intercept).
The second, denoted model “L” replaced the intercept by indicators for the seven industry groups.
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RATIO π −1-weighted ratio estimator with estimation benchmarks as follows
Y = Wheat income X = Wheat area
Y = Beef income X = Beef number
Y = Sheep income X = Sheep number
Y = Dairy income X = Dairy number
Y = Total income X = DSE

S/GREG GREG case-weights based on model “S”

S/BLUP BLUP case-weights based on model “S”

S/RIDGE Ridged BLUP case-weights based on model “S” with Ck = 1000 for
each of the four production benchmarks in the model.

S/D3 Nonparametrically calibrated and ridged BLUP weights based on
model “S” with local Nadaraya-Watson smoothing against Z = DSE.
Same C-values as S/RIDGE.

S/DAR3 Nonparametrically calibrated and ridged BLUP weights based on
model “S” with local Nadaraya-Watson smoothing against Z1 =
DSE, Z2 = ASIC and Z3 = Region. Same C-values as S/RIDGE.

L/GREG GREG case-weights based on model “L”

L/BLUP BLUP case-weights based on model “L”

L/RIDGE Ridged BLUP case-weights based on model “L” with Ck = 1000 for
each of the four production benchmarks in the model, and Ck =
100000 for each of the seven industry benchmarks in the model.

L/D3 Nonparametrically corrected and ridged BLUP weights based on
model “L” with local Nadaraya-Watson smoothing against Z =
DSE. Same C-values as L/RIDGE.

L/DAR3 Nonparametrically corrected and ridged BLUP weights based on
model “L” with local Nadaraya-Watson smoothing against Z1 =
DSE, Z2 = ASIC and Z3 = Region. Same C-values as L/RIDGE.

As expected, a number of samples generated negative weights for calibrated weighting
methods. The following table shows percentages of samples that generate negative
weights under various weighting systems/sample design combinations. Numbers in
parentheses are the average number of sample units with a negative weight in samples
containing at least one negative weight.



68

Simple Random
Sampling

Size Stratification/
“Compromise”

Allocation

Size Stratification/
“Optimal”
Allocation

S/GREG 44 (4.58) 11 (1.38) 82 (7.59)
L/GREG 77 (4.27) 53 (1.83) 94 (9.73)
S/BLUP 44 (4.58) 6 (1.33) 48 (1.81)
L/BLUP 77 (4.27) 20 (1.83) 93 (5.87)

The efficiencies of the different estimators that were observed in the simulation study are shown in
the tables below. These are Root Mean Squared Errors, expressed as a percentage of the population
total. The “best” result for each variable is shown in red and the “worst” result in blue.

(a) Simple Random Sampling

Wheat
income

Beef
income

Sheep
income

Dairy
income

Total
income

RATIO 14.7 28.9 19.1 14.4 16.7
S/GREG 14.0 27.4 17.2 15.6 17.8
L/GREG 13.6 26.1 17.0 15.0 17.3
S/BLUP 14.0 27.4 17.2 15.6 17.8
L/BLUP 13.6 26.1 17.0 15.0 17.3
S/RIDGE 15.8 24.2 16.3 20.4 15.8
L/RIDGE 15.7 23.6 16.0 17.1 15.7
S/D3 15.1 22.2 16.1 18.1 14.5
L/D3 15.0 22.1 15.9 17.5 14.6
S/DAR3 14.4 22.6 15.9 17.3 14.7
L/DAR3 14.5 22.4 15.6 17.0 14.7

(b) Size Stratification with “Compromise” Allocation

Wheat
income

Beef
income

Sheep
income

Dairy
income

Total
income

RATIO 10.0 11.6 15.5 19.2 8.3
S/GREG 10.0 11.4 14.7 19.3 7.9
L/GREG 9.9 11.9 14.8 20.3 8.4
S/BLUP 10.8 14.5 14.8 25.2 10.2
L/BLUP 10.8 12.8 14.3 20.5 8.9
S/RIDGE 11.4 14.5 14.8 25.2 10.2
L/RIDGE 13.2 13.1 15.6 23.1 9.8
S/D3 10.1 11.8 13.9 19.6 8.1
L/D3 10.5 11.5 14.1 19.8 8.1
S/DAR3 9.9 12.1 13.8 19.9 8.2
L/DAR3 10.5 11.6 14.1 19.7 8.1
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(c) Size Stratification with “Optimal” Allocation

Wheat
income

Beef
income

Sheep
income

Dairy
income

Total
income

RATIO 10.1 10.1 15.9 25.7 7.9
S/GREG 10.2 10.3 15.6 26.8 7.4
L/GREG 11.6 11.6 17.4 32.2 8.4
S/BLUP 9.1 11.1 14.8 34.2 8.3
L/BLUP 11.9 11.1 16.4 32.1 8.0
S/RIDGE 12.6 10.7 15.7 37.2 8.7
L/RIDGE 23.5 9.6 21.3 47.8 11.9
S/D3 11.5 9.8 14.3 29.2 7.4
L/D3 12.5 9.1 15.6 30.7 7.3
S/DAR3 11.5 9.6 14.4 29.7 7.2
L/DAR3 12.9 8.9 15.7 31.5 7.3

From these results it would appear that combining a ridge weighting strategy and nonparametric
bias calibration is a good approach to sample weighting for this population and these variables.

5.6 Interaction Between Sample Weighting and Sample Design

Suppose one has the choice about which sample to select, but calibration is a requirement no matter
what sample is selected. Should this influence the way we select the sample? In particular, selection
of the sample so that the calibration constraints are automatically satisfied for a fixed set of sample
weights is an alternative way of ensuring that the sample weighted estimator remains unbiased
under the linear model. Consequently, we can achieve “calibration” by choosing an appropriate
sample rather than by modifying sample weights. This idea is an extension of balanced sampling
(Royall and Herson, 1973a), where for fixed weights, we define a w-balanced sample as one where

′ x sws = ′ x 1. Recollect that this is the condition for unbiased prediction using the sample weights.

At the design stage of a survey we therefore have two options:

(i) Select a w-balanced sample, then use ws “as is”.
(ii) Select the sample according to other criteria, then use a calibrated version of ws.

It seems sensible to choose the option that leads to a smaller variance. Since both options lead to an
unbiased estimator, this is equivalent to choosing the option that gives smaller mean squared error.

We therefore look at the distribution of values of the Calibration Efficiency Ratio (CER) under
different samples:

CER =
var ˆ t y − ty unbalanced sample, calibrated weights( )
var ˆ t y − ty balanced sample, uncalibrated weights( )

.

If CER is generally greater than one we choose option (i), otherwise we choose option (ii).
Given population data and an appropriate working model, together with sample values of auxiliary
variables, we can estimate CER. We show this in an empirical investigation of two scenarios.
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The first scenario combines simple random sampling without replacement with ratio estimation
(SRSWOR/RATIO) based on a scalar benchmark variable Z. We note that ratio weights, by
definition, are calibrated on Z, but not on the population count N. If these weights must also be
calibrated on N, then they take the form:

wcalR =
Nz 
nz s

1s + Vss
−1Xs( ′ X sVss

−1Xs)
−1 N 1−

z 
z s

 

 
 

 

 
 

0

 

 

 
  

 

 

 
  

where Xs = [1s : zs] and Vss = diag(zs). The question here is - should we select a sample via
SRSWOR and then use the ratio calibrated weights, or should we spend some time selecting a
balanced sample and then use original ratio weights (in a balanced sample these weights are just
N/n)?

The second scenario we consider is one where the sample units are selected with probability
proportional to Z without replacement and the Horvitz-Thompson estimator is used
(PPZWOR/HT). In this situation the HTE is the so-called mean of ratios estimator of total, which is
the BLUP under the ratio model R, but with the residual variance proportional to the square of Z.
We note that the inverse probability weights are calibrated on Z, but not on N. Again, if we require
calibration on N as well, then these weights need to be replaced by

wcalπ = π s
−1 + vss

−1x s( ′ x svss
−1x s)

−1 N 1− z z s
(−1)( )

0

 

 
 

 

 
 .

No calibration is required (sample is ppz-balanced) when the sample mean of 1/Z is equal to the
population mean of Z, i.e. z s

(−1) = z . The question then becomes - should we select sample “at
random” using PPZWOR and then use calibrated weights, or should we select a ppz-balanced
sample and then use inverse probability weights?

In order to evaluate the tradeoff between these two approaches to calibration (design vs. weighting)
we carried out an empirical study with two “real” populations. The first (SUGAR) is the population
of 338 sugar growing farms that was described in Chapter 2. Here Z = area assigned for cane
growing. This population “fits” the ratio model R quite well. The second (BEEF) involves 430
Australian farms involved in beef cattle production, with Z = number of beef cattle at the end of the
financial year. This population is extremely skewed, with residual variance increasing with at least
Z2, if not a higher power.

In the following three graphs we show CER values plotted against sample imbalance for three
different sample sizes (n = 10, 30 and 100) when the two design/estimation strategies described
above are applied to SUGAR and BEEF populations. For the SRSWOR/RATIO strategy, sample

imbalance is defined as 1−
z 
z s

 

 
 

 

 
 ×100, while for the PPZWOR/HT strategy, sample imbalance is

defined as 1− z z s
(−1)( )×100.
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n = 10
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n = 30



73

n = 100
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Inspection of these plots leads to the following conclusions:

1. Gains in “robustness” from sample balancing typically outweigh possible efficiency loss.

2. Where calibration leads to more efficient inference than balancing, there appears to be no
“preferred” direction of imbalance.

3. Obtaining “exact” w-balance matters little for the ratio estimator, since CER values vary little
for samples that are “close” to balance.

4. However, the HTE is more sensitive to lack of w-balance, with CER values varying
considerably for samples that are “close” to balance.

That is, it is typically much better if calibration is achieved by suitable choice of sample than by
weight modification.
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6. Estimation for Domains and Small Areas

A domain is a subgroup of the sample population for which a separate estimate of the total of Y (or
mean etc.) is required. For example, in many business surveys the sample frame is out of date, so
the industry and size classifications of many units on the frame do not agree with their “current”
industry and size classifications. After the survey is carried out, estimates are required for the
current industry by size classes. These classes then correspond to domains of interest.

A basic assumption is that domain membership is observable on the sample. Consequently, we can
define a domain membership variable D with value di for population unit i, such that di = 1 if unit i
is in the domain and is zero otherwise.  The number of population units in the domain is then the
population sum of D and is denoted by Nd. The population total of Y for the domain is

tdy = diyiU∑ .

The domain total of interest is therefore just the population total of the derived variable DY.

6.1 Model-Based Inference when the Domain Size Nd is Unknown

Consider a working model ξ for the distribution of Y values in the domain that is a simple extension
of the homogeneous population model H. In particular, we assume that domain membership (D) can
be modelled as N independent and identically distributed realisations of a Bernoulli(θd) random
variable, and, conditional on D, the population values of Y are uncorrelated with constant mean and
variance, so that we can write

Eξ(yi | di = 1) = µd

Varξ(yi | di = 1) = σ d
2

Covξ(yi, yj | di, dj) = 0
Eξ(di) = θd

Varξ(di) = θd(1 − θd)
Covξ(di, dj) = 0.

As always, we have the implicit assumption that sample inclusion is independent of the values of
the variables of interest. Consequently, sample inclusion and domain membership must be
independent of one another (so that we can estimate θd from the sample data). This will be true if
the sample is chosen via simple random sampling.

Under this working model it is straightforward to show that

Eξ(diyi) = µdθd

Varξ(diyi) = σ d
2 θd + µd

2 θd(1 − θd)
Covξ(diyj, djyj) = 0

which is just a special case of the homogeneous population model H, and so the BLUP for tdy is
expansion estimator
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ˆ t Hdy =
N
n

diyis∑ =
Nnd

n
y sd

where y sd  is the mean of the sample Y values from domain d. Similarly, the prediction variance of
this BLUP is

Varξ ˆ t Hdy − tdy( )=
N 2

n
1−

n
N

 
 
 

 
 
 θdσ d

2 + θd (1−θd )µd
2[ ]

with the usual “plug-in” estimate of this variance.

6.2 Model-Based Inference when the Domain Size Nd is Known

This is a more unusual situation. Since we know how many units in the population are in the
domain we need to condition on this knowledge. Thus all moments are evaluated conditional on
knowing Nd. We denote this conditional version of the working model by ξd. Consequently, Eξd(Nd)
= Nd and Varξd(Nd) = 0, and symmetry-based arguments can then be used to show

Eξd(dj) = pd

Varξd(dj) = pd(1 − pd)
Covξd(dj, dk) = − pd(1 − pd)/(N − 1)

where pd = Nd/N. If we then further assume that Y is independent of Nd conditional on D (i.e.
knowing Nd tells us nothing extra about yi than knowing the value of di), then

Eξd(djyj) = µdpd

Varξd(djyj) = σ d
2 pd + µd

2 pd(1 − pd)
Covξd(djyj, dkyk) = − µd

2 pd(1 − pd)/(N − 1)
Covξd(djyj, dj) = − µdpd(1 − pd)
Covξd(djyj, dk) = − µdpd(1 − pd)/(N − 1).

We see that with respect to this conditional distribution, the “derived” random variable DY has a
mean and variance that is the same for all population units, and that the covariance between any two
population values of DY is constant. That is DY follows the homogeneous population model (H) as
well. Consequently the BLUP of the population total tdy is therefore still the simple expansion
estimator ˆ t Hdy , but now

Varξd
ˆ t Hdy − tdy( )=

N 2

n
1−

n
N

 
 
 

 
 
 Varξd (diyi) − Covξd (diyi,d j y j )[ ]

= N 2

n
1− n

N
 
 
 

 
 
 σ d

2 pd + N
N −1

µd
2 pd (1− pd )

 
  

 
  .

However, in this situation there seems no strong reason why one should restrict attention to
estimates that are linear in DY. An obvious alternative is the nonlinear ratio-type estimator that is a
“plug-in” version of the MMSEP for this case:
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ˆ t Rdy = Nd y sd = Nd

diyis
∑

dis∑
.

 Observe that ˆ t Rdy  is approximately model-unbiased in large samples, and a first order
approximation to its prediction variance is

Varξd
ˆ t Rdy − tdy( )≈

N 2

n2 Varξd diyis
∑ − µd dis

∑ −
n
N

diyiU
∑ 

  
 
  

= N 2

n
1− n

N
 
 
 

 
 
 σ d

2 pd .

Comparing this variance with the variance of ˆ t Hdy  above we see that there will typically be large
efficiency gains from use of this ratio-type estimate.

Why just condition on Nd? The Conditionality Principle (Cox and Hinkley, 1974) states that one
should always condition on ancillary variables in inference. An ancillary variable is one whose
distribution depends on parameters that are distinct from those associated with the distribution of
the variable of interest. For domain analysis, the parameter(s) associated with the distribution of the
domain inclusion variable D are distinct from those associated with the distribution of the survey
variable Y. Consequently, one should condition on D in inference. This is equivalent to
conditioning on both the population count Nd of the number of units in the domain, and the
corresponding sample count nd.

If one conditions on both Nd and nd, then ˆ t Rdy  is in fact the BLUP for tdy with

Varξ ˆ t Rdy − tdy nd ,Nd( )=
Nd

2

nd

1−
nd

Nd

 

 
 

 

 
 σ d

2 .

This is usually referred to as the variance of the post-stratified estimator for the domain total. It can
be seen that this post-stratified variance is zero if Nd = nd, when we know that ˆ t Rdy  has zero error.

Which is the right variance to use with tdy? There is an argument that states that since the
distribution of tdy depends on the parameters of Y as well as the parameters of D, this is a case where
the conditionality principle does not apply. A cautious approach may therefore be to use the
maximum of the two variance estimates above.

6.3 Model-Based Inference Using Auxiliary Information

Let X denote the auxiliary variable. We assume an unknown domain size Nd and a working model ξ
for Y that satisfies

Eξ(yi | di = 1) = µ(xi;ωd)
Varξ(yi | di = 1) = σ2(xi;ωd)
Covξ(yi, yj | di, dj) = 0 for i ≠ j.
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As above we assume domain membership can be modelled as the outcome of independent and
identically distributed Bernoulli trials, independently of the value of Y. However, domain
membership can depend on X, so

Eξ(di) = θ(xi;γd)
Varξ(di) = θ(xi;γd)[1 − θ(xi;γd)]
Covξ(di,dj) = 0.

With this set-up we then have

Eξ(diyi) = µ(xi;ωd)θ(xi;γd)
Varξ(diyi) = σ2(xi;ωd)θ(xi;γd) + µ2(xi;ωd)θ(xi;γd)[1 − θ(xi;γd)]
Covξ(diyi,djyj) = 0.

Because sampling is uninformative for both Y and D, given X, we can estimate ωd and γd from the
sample data. The “plug-in” model-based estimator of tdy is then

ˆ t ξdy = diyis∑ + µ(xi; ˆ ω d )θ(xi; ˆ γ d )
r∑ .

This will be a consistent estimator of tdy under our working model. The prediction variance of ˆ t ξdy  is
then

Varξ ˆ t ξdy − tdy( )= Varξ µ(xi; ˆ ω d )θ(xi; ˆ γ d )
r∑( )+ Varξ diyi( )

r∑ = V1 + V2 .

The leading term in this variance is V1. The second term V2 has a simple plug-in estimate:

ˆ V 2 = σ 2(xi; ˆ ω d )θ(xi; ˆ γ d ) + µ2(xi; ˆ ω d )θ(xi; ˆ γ d )[1−θ(xi; ˆ γ d )]( )r∑ .

V1 can be estimated using computer intensive methods like the jackknife or the bootstrap. An
alternative is to develop a linearised version of this term

V1 ≈ Varξ ˆ γ d µ(xi; ˆ ω d ) ∂θ(xi;γ d )
∂γ d

r∑ + ˆ ω d θ(xi;γ d ) µ(xi;ωd )
∂ωd

r∑
 

 
 

 

 
 .

Estimates of the variances of ˆ ω d  and ˆ γ d  and their covariance can calculated from the sample data.
The Taylor series estimator of V1 is then

ˆ V 1 = ˆ V ξ ˆ γ d( ) µ(xi; ˆ ω d ) ∂θ(xi; ˆ γ d )
∂ ˆ γ dr∑

 

 
 

 

 
 

2

+ ˆ V ξ ˆ ω d( ) θ(xi; ˆ γ d ) µ(xi; ˆ ω d )
∂ ˆ ω dr∑

 

 
 

 

 
 

2

+ 2 ˆ C ξ ˆ γ d , ˆ ω d( ) µ(xi; ˆ ω d ) ∂θ(xi; ˆ γ d )
∂ ˆ γ dr∑

 

 
 

 

 
 θ(xi; ˆ γ d ) µ(xi; ˆ ω d )

∂ ˆ ω dr∑
 

 
 

 

 
 .

To illustrate, consider the situation where the population is stratified and the regression of Y on X is
linear and through the origin for units in the domain, but the slope of this regression line varies from
stratum to stratum. In addition, the proportion of the population in the domain varies significantly
from stratum to stratum. Put θh = probability that a population unit in stratum h lies in the domain
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and βh = the slope of regression line for domain units in stratum h. The estimator of the domain
total of Y for this working model and population is then:

ˆ t ξdy = diyis∑ + pshd Nh x h − nh x sh( ) ˆ β h
h

∑

where pshd is sample proportion of stratum h units in the domain; ˆ β h  is the stratum h estimate for
the slope of the regression of Y on X in the domain; x h  is the stratum h average for X; and x sh is the
sample average for X in stratum h. The Taylor series estimate of the leading term in the prediction
variance of ˆ t ξdy  is

ˆ V 1 = Nh x h − nh x sh( )2 ˆ V ξ pshd( ) ˆ β h
2 + ˆ V ξ ˆ β h( )pshd

2( )
h

∑

where ˆ V ξ pshd( ) is the estimated variance of phd and ˆ V ξ ˆ β h( ) is the estimated variance of ˆ β h . Note
that independence of D and Y within a stratum causes the covariance term in this estimate to
disappear, while the independent Bernoulli realisations assumption gives ˆ V ξ pshd( )= nh

−1pshd 1− pshd( )
and, if Varξ(yi | xi, di = 1) ∝ σ hd

2 xi, ˆ V ξ ˆ β h( )= nhd x shd( )−1 ˆ σ h
2. The plug-in estimator of V2 is defined

similarly.

6.4 Small Area Estimation

In many cases large national samples are also used to produce estimates for small sub-national
groupings of the population. These groupings are then domains of interest. Typically the groups are
defined geographically, in which case they are referred to as small areas.

A basic problem with domains defined in this way is that the estimation methods described earlier become
impossible to apply, mainly because sample sizes are typically small or even zero in the small areas of
interest, so the direct estimates (i.e. area-specific estimates) investigated above tend to be quite unstable.

Availability of suitable auxiliary information is quite important for resolving this problem. This can be
values of the variable of interest in other, similar, areas; values of this variable for the same area in the
past; or values of other variables that are related to the variable of interest. In all cases we assume that the
relationship between the survey variable and the auxiliary variable is the same across all small areas, and
so we ″borrow strength” from all small areas by using their data to fit this common model, which we then
use in estimation in any single small area.

6.4.1 Fixed Effects Models

These models essentially assume that domain to domain variability in Y can be explained entirely in terms
of variability in the auxiliary information. A linear specification is commonly used to model the
relationship between Y and X, typically via the general linear model

y = Xβ + ε
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where we use the same notation as in the previous chapter. Note that, as is almost always the case,
uninformative sampling is assumed, so this model also holds at sample level. Given an estimate ˆ β 
of β, we can then estimate the average of Y in small area d using the estimator

ˆ y d = Nd
−1 ydi

i=1

nd

∑ + ′ x di
ˆ β 

i= nd +1

Nd

∑
 

 
  

 

 
  

provided we know (or can estimate) the population count Nd in the small area. This is sometimes
referred to as the “synthetic” estimator of this mean.

Given a set of survey weights (typically used for national level estimation), an alternative estimator
is the weighted direct estimator:

ˆ y d = wdi
i=1

nd

∑
 

 
  

 

 
  

−1

wdiydi
i=1

nd

∑
 

 
  

 

 
  = y wd .

It is easy to see that using this estimator corresponds to assuming the simple model ydi = βd + εdi .

In many cases, good quality direct estimates for a classification of the population (indexed by g
below) are available, and these “cut across” the small area of interest. For example, we may have
estimates by age and sex for a population but be interested in an overall mean estimate for a small
area. In such a situation we can estimate this mean by assuming that the contributions to it from the
auxiliary classification are the same as in the overall population. More generally we can define
these contributions in terms of the within area proportions of an auxiliary variable X. This leads to
the apportionment estimator

ˆ y d =
tdgx

tdx

 

 
 

 

 
 ̂  y g

g=1

G

∑ .

This estimator is the original “synthetic” estimator in the small area estimation literature. It is
generally biased, but has a small variance. Under the linear model Eξ (yi | i ∈ g) = αg + βg X

Eξ ( ˆ y d − y d ) =
tdgx

tdx

Eξ ( ˆ y g ) −
Ndg

Nd

Eξ (y dg )
 

 
 

 

 
 

g=1

G

∑

=
tdgx

tdx

(αg + βg
ˆ x g ) −

Ndg

Nd

(αg + βg x dg )
 

 
 

 

 
 

g=1

G

∑

= αg
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−
Ndg
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 + βg

tdgx

tdx

ˆ x g −
Ndg

Nd

x dg

 

 
 

 

 
 

g=1

G

∑ .

This is unbiased under a classification-based ANOVA model for the population (i.e. X = 1).

6.4.2 Random Effects Models

This is the most commonly used class of models in small area estimation. The assumption here is
that unexplained area specific variability remains even after accounting for the auxiliary information.
Since there are typically a large number of "exchangeable" small areas, the idea is to introduce a
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random “effect” for each small area that accounts for this unexplained variability. Without loss of
generality we assume that the individual values making up all population and sample vectors are
ordered by the D small areas that make up the population. Under a linear specification for Y this
leads to a mixed model incorporating domain specific random effects:

y = Xβ + Zu + ε

where Z is a matrix of known covariates (typically defined at area level), u is a vector made up D
independent realisations of a vector-valued area specific effect of dimension q with zero mean
vector and covariance matrix σ2Λ, that is uncorrelated between different areas, and ε is an
individual level “noise” vector, with zero mean and diagonal covariance matrix σ 2D, where D is a
known matrix, that is uncorrelated with u. The matrix Λ is often referred to as the matrix of
variance components of the model. Typically this matrix is itself parameterised in terms of a lower
dimensional parameter, so we write it in the form Λ( ϕ ).

The BLUP of any linear combination of the population Y-values can be obtained using the result of
Royall (1976) described at the end of Chapter 2. Let a be an arbitrary N-vector of known constants.
Using the same notation as in that Chapter, the BLUP of θ = ′ a y  is

ˆ θ = ′ a sy s + ′ a r[Xr
ˆ β + VrsVss

−1(y s − Xs
ˆ β )]

where ˆ β = ( ′ X sVss
−1Xs)

−1( ′ X sVss
−1y s)  is the best linear unbiased estimator of β. Note that in this case

Varξ(ys) = σ 2(Ds + Z sΛ ′ Z s)  = Vss and Covξ(yr, ys) = σ 2Z rΛ ′ Z s  = Vrs  and hence

ˆ θ = ′ a sy s + ′ a r[Xr
ˆ β + Z r ˆ u ],

where

ˆ β = ( ′ X s(Ds + Z sΛ ′ Z s)
−1Xs)

−1( ′ X s(Ds + Z sΛ ′ Z s)
−1y s)

ˆ u = Λ ′ Z s(Ds + Z sΛ ′ Z s)
−1(y s − Xs

ˆ β )].

To illustrate, consider the Random Means (RM) model. In this case ydi = β + ud + edi , so that

ˆ β = (λ + nd
−1)−1

d∑( )−1
(λ + nd

−1)−1 y sdd∑
Vrs = σ 2λ diag(1rd ′ 1 sd )
Vss = σ 2[diag(λ1sd ′ 1 sd ) + Iss]

which leads to ˆ u d =
nd λ

1+ nd λ

 

 
 

 

 
 (y sd − ˆ β )  and hence

ˆ Y d = Nd
−1 ny sd + (Nd − nd ) ˆ β + (Nd − nd ) nd λ

1+ nd λ

 

 
 

 

 
 (y sd − ˆ β )

 

 
 

 

 
 .

We need to know the matrix Λ if we wish to evaluate the BLUP. A variety of estimation methods
are typically used for the parameters of models with random effects. The more common include
Empirical Best Linear Unbiased Prediction (EBLUP), Empirical Bayes (EB) and Hierarchical
Bayes (HB). The EBLUP method usually involves maximum likelihood (ML) or residual
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(restricted) maximum likelihood (REML) estimation of the variance components, although
sometimes the method of moments is used. In virtually all cases the random effects are assumed to
be normally distributed.

6.4.3 Generalized Linear Mixed Models (GLMM) in Small Area Estimation

The data underpinning small area estimates are often categorical. Generalized Linear Models
(GLMs) are standard models for such data. Their application in the small area estimation context
leads to synthetic GLM-based small area estimates. Similarly, the Generalized Linear Mixed Model
(GLMM) extension of GLM can be used to introduce random area effects. Such models are
typically written Eξ (y | u) = h(η) for a specified function h, with η = Xβ + Zu . Here u is a vector
of random area effects, as above, typically assumed to be normally distributed with zero mean
vector and variance-covariance matrix Varξ(u) = Ω(ϕ).

To illustrate, suppose we have a Bernoulli response and a random mean model. Then the small area
counts y s1, y s2,...,y sD  are independent binomial random variables. The estimate of the proportion of
“successes” in area d is then:

ˆ θ d = Nd
−1[nd psd + (Nd − nd )( ˆ β + ˆ u d )]

where psd is the proportion of successes in the sample in small area d, and ˆ β  and ˆ u d  are obtained by
fitting a mixed logistic model to the sample data in the small areas of interest.

6.4.4 Estimation of Mean Square Error

This can be quite complex because of the need to include uncertainty associated with estimation of
variance component parameters. To illustrate we focus on the linear mixed model and proceed in a
number of steps.

1. Suppose β and variance components Λ are known. Put τ = ′ a r(Xrβ + Z ru) . Then the MMSEP
of τ is ˆ τ MMSEP = Eξ τ | y s( )= ′ a r (Xrβ + Z r ˆ u MMSEP ) , where ˆ u MMSEP = Λ ′ Z sΣ s

−1(y s − Xsβ) is an
unbiased predictor of u. Here Vss = σ 2Σ s . Then

).,(

)(

)()ˆ(

2
1
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1
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Under the random means model this becomes g1 = (1− fd )2σ 2nd
−1γ d , where γ d = λ(nd

−1 + λ)−1.

2. Suppose β is replaced by its weighted least squares estimator ˆ β , but the variance
components Λ are still assumed known. Then the BLUP of τ is ˆ τ BLUP = ′ a r(Xr

ˆ β + Z r ˆ u BLUP ) ,
where ˆ u BLUP = Λ ′ Z sΣ s

−1(y s − Xs
ˆ β ). Here we can write

ˆ τ BLUP − τ = ( ˆ τ BLUP − ˆ τ MMSEP ) + ( ˆ τ MMSEP − τ)

= ′ a r[Xr + Z rΛ ′ Z sΣ s
−1Xs](ˆ β −β)[ ]+ ( ˆ τ MMSEP − τ)

so MSE( ˆ τ BLUP ) = g2(σ 2,ϕ) + g1(σ
2,ϕ) . Under the random means model
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g2 = σ 2n−1(1− fd )2(1− γ d )2 1− n−1 naγ aa=1

D∑ 
  

 
  

−1

.

3. Finally, we have the EBLUP situation, with β and variance components estimated. Then

).ˆˆ)(ˆ(E2
)ˆˆ(E)ˆ(MSE

)ˆˆˆ(E)ˆ(MSE
2

2

BLUPEBLUPBLUP

BLUPEBLUPBLUP

BLUPBLUPEBLUPEBLUP

ττττ
τττ

τττττ

−−+
−+=

−+−=

The first term on the right hand side is given by the preceding MSE. A naive estimator of
the MSE of the EBLUP is defined by disregarding last two terms on the right hand side and
replacing the unknown variance components by suitable estimators. However, Kacker and
Harville (1984) show that although the third component is neglible, the second is not. They
derive a “plug in” approximation to this second term. Prasad and Rao (1990) show that the
MSE estimator based on this approximation underestimates true MSE, and so they introduce
a second order approximation: MSE( ˆ τ EBLUP) ≅ g1(σ

2,ϕ) + g2(σ 2,ϕ) + g3(σ 2,ϕ) . For the
random means model, with variance components estimated via ML, we have

g3 = 2nσ 2nd
−2(1− fd )2(nd

−1 + λ)−3[n (na
−1 + λ)2

a=1

D∑ − ( na
−1

a=1

D∑ + λ)2]−1.

If the variance components are estimated via REML, then

g3 = 2nσ 2nd
−2(nd

−1 + λ)−3[nα2 −α1]
−1

α1 = (nd
−1 + λ)−1

d =1

D∑ + ∆ dd =1

D∑
α2 = (nd

−1 + λ)−1

d =1

D∑ + λ ϕ−1 − ∆ dd =1

D∑ 
 
  

 
 

2

+ λ−1 − 2 ∆ d (1+ nd λ)−1

d =1

D∑
∆ d = (nd

−1 + λ)−2 / (na
−1 + λ)−1

a=1

D∑ .

It is worth noting that the Prasad and Rao MSE formula above is aimed at estimation of

Varξ ( ˆ τ EBLUP − τ ) = Varξ ′ a r (Xr
ˆ β + Z r ˆ u ) − ′ a r(Xrβ + Z ru)( ).

However, what we are really interested in is

Varξ ( ˆ θ EBLUP −θ) = Varξ ′ a r (Xr
ˆ β + Z r ˆ u ) − ′ a r(Xrβ + Z ru + εr)( ).

This leads to a fourth term in the MSE formula

MSE( ˆ θ EBLUP) ≅ g1(σ
2,ϕ) + g2(σ 2,ϕ) + g3(σ 2,ϕ) + g4 (σ 2) .

6.4.5 An Example: Comparing GLM and GLMM-Based Predictors for LAD level Estimates
of ILO Unemployment from the UK LFS

We now demonstrate the GLM and GLMM approaches to small area estimation by applying them
to the problem of estimating the numbers of people who are “ILO Unemployed” within each of the
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406 local authority districts (LADs) of Great Britain. The concept of “ILO unemployed” is the
standard way unemployment is measured in the UK Labour Force Survey. However, there is
another source of information about unemployment. This is the “claimant count”, i.e. the number of
people who register to claim unemployment benefits. The two measures of unemployment are not
the same, although they are closely related. However, the ILO unemployment estimate is the
“official” measure of unemployment in Great Britain. Here we treat claimant count as a covariate,
since it is available at age by sex level within each LAD. Our direct estimates of ILO
unemployment are obtained from the UK LFS, and correspond to weighted sums of the numbers of
“ILO unemployed” survey respondents within each age by sex group within each LAD. These
direct estimates define the level at which we specify our models (we do not aggregate age and sex
groups because we believe there are differences in the relationship between ILO unemployment and
claimant count between these groups.

We consider 5 combinations of models and estimation methods for these data.

Model A

This bases estimation on a fixed effects logistic model for the Bernoulli variable corresponding to
being “ILO unemployed” at age-sex by LAD level. There are 29 terms in this model, which can be
specified as: age-sex effect * logit(claimant count) effect + region effect + socio-economic group
effect + logit(total LAD claimant count) effect. Here * denotes all main effects and interaction
effects associated with the contributing terms, in this case equivalent to assuming that each age-sex
group has a separate regression relationship for the logit of claimant count. The region effects and
socio-economic group effects in the model correspond to effects defined by a regional classification
of the LADs and a separate socio-economic classification of these areas. Finally, a separate
regression effect is included, defined for the total claimant count in the LAD, and reflecting overall
employment conditions in the area. The small area estimates obtained by fitting this model to the
LFS direct estimates are calibrated (via iterative re-scaling) to agree with direct estimates of
unemployment by age-sex, region and socio-economic group. Also, the estimated MSE includes a
between area variance term (derived from fitting a separate random effects version of the model to
the LFS data).

Model B

Same as (A) except that no between area component is included in the estimated MSE.

Model L1

These estimates are based on a model without the age-sex specific claimant count effects but with
LAD level claimant count effect. That is, it assumes that the relationship between ILO
unemployment and claimant count is the same for all age-sex groups in a LAD. The model has 22
terms and can be specified: age-sex effect + region effect + socio-economic group effect +
logit(LAD claimant count) effect. These estimates obtained by fitting this model are calibrated to
agree with national level  age-sex, region and socio-economic counts of ILO unemployed. As with
model (B) there is no between area component in the MSE.

Model L2

Same approach as with Model L1 but now with age-sex specific claimant count effects and without
the LAD level claimant count effect in the model. This model can be specified as: age-sex effect *
logit(claimant count) effect + region effect + socio-economic group effect.
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Model M

This is the simplest model we considered. It has no claimant count effects at all, and can be defined
as: age-sex effect + region effect + socio-economic group effect. As with all models, estimates
derived from it are calibrated on age-sex, region and socio-economic group. Also there is no
between area component in MSE.

All the above models were used to derive both GLM and GLMM-based predictors. The latter
however include an LAD-specific random effect. GLMM model parameters were fitted using
PL/REML and MSE estimated using the Prasad-Rao approach. In addition, a synthetic GLM
estimator was produced using just the estimates of the fixed parameters in the GLMM model. This
is denoted GLMM/Fixed below.

The table below shows selected diagnostics for the “goodness of fit” of the different small area
estimates to the direct estimates (for the LADs). The Wald statistic (W) and associated p-value test
for closeness of model-based estimates to expected values of the direct estimates (values in
parentheses are cross-validation values of this statistic). The further this statistic deviates from the
sample size (i.e. the number of LADs) the worse the fit. Similarly, the Non-Overlap statistic
measures the proportion of non-overlapping “2 sigma” CIs for the direct and model-based
estimates. This should be five percent of 406 (i.e. approximately 20) if the model-based MSEs are
valid. Inspection of these results indicate potential ‘overfitting” by the GLMM estimates. With the
exception of the GLM(M) estimates, however, the estimates based on fixed model specification
seem quite reasonable.

Method W p-value Non-Overlap
GLM(A) 355.1483

(391.8445)
0.9672

(0.6841)
12/406

GLM(B) 421.1285
(466.5007)

0.2919
(0.0202)

18/406

GLMM(A) 261.8535 1 6/406
GLMM(A)/Fixed 416.8397 0.3444 17/406
GLM(L1) 425.5356 0.2425 17/406
GLMM(L1) 260.2399 1 6/406
GLM(L2) 421.0064 0.2920 18/406
GLM(M) 584.3274 1.47e-8 38/406
GLMM(M) 184.0444 1 3/406

Another set of diagnostics is based on the OLS regression of the square root of the direct estimates
on the model-based estimates (estimated parameters with standard errors in parentheses are shown
in the following table). The ideal here is a fitted regression line that is not significantly different
from a line with unit slope that passes through the origin.  Inspection of the entries in the table
indicate that the GLM-based estimates tend to be slightly better than the GLMM-based estimates
with respect to this diagnostic.

Method Intercept Slope R2
GLM(A) -0.6278

(1.1048)
0.9995

(0.0169)
0.8960

GLMM(A) -1.7836
(0.9409)

1.0183
(0.0144)

0.9250

GLMM(A)/Fixed -0.6213 0.9994 0.8960
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(1.1049) (0.0169)
GLM(L1) -0.4513

(1.1064)
0.9969

(0.0170)
0.8953

GLMM(L1) -1.6966
(0.9375)

1.0171
(0.0144)

0.9253

GLM(L2) -1.20921
(1.1154)

1.0076
(0.0171)

0.8958

GLM(M) -1.6320
(1.3266)

1.0103
(0.0203)

0.8593

GLMM(M) -3.7089
(0.8536)

1.0467
(0.0131)

0.9406

Finally, we illustrate the gains from using the model-based small area estimates by showing their
gain plots (smooth curves are cubic polynomial fits to gain values). The Gain for a particular LAD
is defined as the estimated SE of the Direct Estimate for that LAD divided by the Estimated RMSE
of the corresponding model-based estimate. The plots show these gain values for different
model/methods when the LADs are ordered by their claimant counts on the x-axis. We observe that
the gains associated with GLM-based methods are generally larger than those based on the GLMM-
based methods. This is what we would expect – the introduction of a random effect tends to
ameliorate potential bias at the expense of decreasing precision. However, since the GLM-based
methods seem essentially unbiased in this application, the argument for introducing random effects
is much weaker. The main impact of introducing a random effect can be seen in the results for
model M where the extremely important claimant count covariate was excluded. Here the GLM-
based estimates fail the bias test(s) described previously, while the GLMM-based estimates pass.
The price for attaining unbiasedness for such a poorly specified model can been seen however in the
gains associated with the GLMM in this case. These are rather small.
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